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a b s t r a c t

In this paper, we propose a new road lane model based on linear fuzzy space mathematics, coupled with a
robust road lane detection method using fuzzy c-means clustering. The fuzzy line based road lane model
presented here describes a lane as a set of fuzzy collinear fuzzy points. The proposed algorithm for road
line detection is able to deal with imprecise data and enables reduced computational complexity (propor-
tional to the number of fuzzy points multiplied by the number of fuzzy lines) versus a standard Hough
transformation. Experimental results show that the proposed method is fast, and robust enough for
use in real-time applications. The proposed method has been implemented as an Android-based mobile
phone application.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction Kang and Jung [6] used connected-component analysis and
Demand for traffic safety systems designed to minimize the risk
of accidents is increasing. Lane detection plays a significant role in
driver assistance systems, and can help to estimate the geometry
of the road ahead. According to the International Data Corporation,
nearly 300 million smart phones were shipped in 2010; and the
smart phone market is expected to grow to 450 million units in
2011. Smart phones are often equipped with a digital camera, GPS
and WiFi capability, and represent promising devices for driver
assistance systems. Thus, the development and implementation of
efficient imprecise space representation models capable of feature
extraction and detection in smart phones is increasingly relevant.

A typical complete model-based lane detection system consists
of four parts: (1) lane modeling, (2) feature extraction, (3) detec-
tion, and (4) tracking. Lane modeling involves the development
of mathematical descriptions to represent road lanes; while fea-
ture extraction involves identification of particular lane features,
such as color, texture or edge, etc. During the detection stage, the
lane model is then fit with the set of extracted features. Finally,
lane tracking is applied to follow lane changes using reduced sys-
tem complexity, which is achieved by reducing the search region.

Although the Hough transform [1] remains one of the most
commonly applied lane detection techniques [2–4]; other
techniques have also been applied to this problem. For example,
Pomerleau [5] used neural networks in their ALVINN system; while
ll rights reserved.
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dynamic programming. In addition, probabilistic methods, such
as Maximum a posteriori estimation evaluated using the Metropo-
lis algorithm, have been reported for use in lane detection systems
[7,8]. More recently, Wang et al. [9] proposed the use of fuzzy
methods during the feature extraction stage for automatic bright-
ness compensation. With respect to the line model, several differ-
ent approaches have been reported in the literature, including
representing road lane models as: a straight line [10]; B-spline
[11]; parabola [4]; or hyperbola [12]. A more detailed survey of
lane detection strategies has been published [4]. A common com-
ponent of nearly all lane detection systems is the use of specialized
hardware or a PC, coupled with a vehicle mounted video camera.

Common problems in lane detection arise from the fact that
discrete space (digital raster image) is used for real-world element
representation, while the spatial relations used apply the rules of
continual space. For example, lines are represented as a set of dis-
crete points that typically do not have to be collinear, in contradic-
tion with the definition of a line. In addition, because real-world
objects are mapped to a digital raster image via a variety of
sensors, the resulting image is only an approximation of the real-
world object. Thus, imperfections in either the image data or the
edge detector may result in missing points or pixels on lines, as
well as spatial deviations between an ideal line and the set of
imprecise points obtained from the edge detector. The overall
effect is an image containing varying levels of geometric distortion.

This present study focuses on modeling basic planar imprecise
geometry objects and the relationships between them. The appli-
cation of these models to spatial data management systems is then
described, and results are briefly presented.
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An overview of studies in the literature dealing with imprecise
point object modeling has been published [13].

In general, three basic approaches to spatial data uncertainty/
imprecision are recognized: (1) Exact Models [14–18,11], (2) Prob-
abilistic Models [7,8,19–23], and (3) Fuzzy Models [13,24–31].

One of the earliest and still most commonly used techniques for
feature extraction is known as the Generalized Hough transforma-
tion, proposed by Duda and Hart [1] in 1972. The Generalized
Hough transformation is based on a voting procedure carried out
in parameter space. Line candidates are obtained as local maxima
of the Hough transformation, which highly depend on spatial rela-
tion co-linearity.

Based on our previous results [13], we introduce here a novel
mathematical model of fuzzy lines, as well as models of basic spa-
tial relations, including: coincidence, between and collinear. Prac-
tical applications of the results obtained in this paper are based
on simple, yet effective, modeling of imprecise data using fuzzy
sets, which enables the gradual estimation of object spatial rela-
tions. Instead of using a set of discrete 2D points, we propose the
use of a set of fuzzy points, which makes road lane detection more
robust then the crisp approach, due to the incorporation of a grad-
ual estimation of feature spatial relations.

This work consists of six sections (Sections 1–6). Following this
introduction (Section 1), a novel road lane mathematical model is
presented, along with definitions of basic spatial fuzzy relations
(Section 2). After that, a new algorithm for road feature extraction
is described (Section 3), followed by a novel road lane detection
algorithm based on fuzzy relations defined in linear fuzzy space
(Section 4), and experimental results (Section 5). Finally, concluding
remarks and future research directions are discussed (Section 6).
2. The road lane model

The conceptual scheme proposed in this paper, consisting of a
driver assistance system integrated into a smart phone, is illustrated
in Fig. 2.1. The software components are divided in four functional
groups: (1) image capture, (2) road feature extraction, (3) road lane
detection, and (4) a decision module. The focus of the present work
is on road feature extraction and road lane detection.
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Fig. 2.1. Conceptual schematic of a driver assist
Capturing images on Android based smart phones is a part of
the Android operating system. The common format of real time im-
age flow is 320 � 240 pixels with a YUV based color model, which
encodes color information by taking human perception into
account.

Road lane detection modules depend on good feature estima-
tion, which is conducted during the road feature extraction stage.
Usually, road features are extracted as a set of discrete points,
using edge extraction or texture extraction methods. In this paper,
we propose a modified edge extraction method. The region of
interest for road feature extraction is contained in the lower half
of the image (the 320 � 120 gray scale luminance part of the origi-
nal image).

In this paper, we constructed a 2D lane model using a set of
imprecise points extracted during the edge detection stage. Most
road lane detection systems are sensitive to the precision of the
points extracted by the edge detection method. Fig. 2.2 illustrates
how the edge points extraction process works. Specifically, an edge
point is located at a position where the plot profile first derivate
has a maximum value. In Fig. 2.2, the edge point is located ‘‘some-
where’’ around a distance of 235 pixels.

Instead of exact discrete values, we incorporated fuzzy points,
as previously defined [13] for edge point location. Fuzzy points de-
fined in 2D linear fuzzy space are represented as discrete 2D points
extended with single non-negative real values. In the following
figures, fuzzy points are represented as circles, with a center in
core and a radius that corresponds to a support.

The road lane model proposed in this work is actually a set of
fuzzy lines and fuzzy points based on the theory of fuzzy sets pre-
sented in [13], which is related to fuzzy point, fuzzy line and spa-
tial relations in R2 linear fuzzy space.
2.1. Fuzzy line in R2 linear fuzzy space

The imprecise line model given in this paper relies on the concept
of fuzzy points and linear fuzzy space introduced in our previous
work [13]. Following two preliminary definitions, we will introduce
basic operations over linear fuzzy spaceH2 defined in R2, as well as
their properties, which are later used in our road lane model.
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Fig. 2.2. Edge extraction stage.
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Definition 2.1. Fuzzy point P 2 R2, denoted by eP is defined by its
membership function leP 2 F 2, where the set F 2 contains all
membership functions u: R2 ? [0,1] satisfying the following
conditions:

(i) ð8 u 2 F 2Þð91P 2 R2ÞuðPÞ ¼ 1,
(ii) (" X1,X2 2 R2)(k 2 [0,1])u(kX1 + (1 � k)X2) P min

(u(X1),u(X2)),
(iii) function u is upper semi-continuous,
(iv) [u]a = {XjX 2 R2,u(X) P a} a-cut of function u is convex.

The point from R2, with membership function leP ðPÞ ¼ 1, will be
denoted by P (where P is the core of the fuzzy point eP), and the
membership function of the point eP will be denoted by leP . [P]a

denotes the a-cut of the fuzzy point (a set from R2).
Definition 2.2. R2 Linear fuzzy space is the set H2 � F 2 of all func-
tions which, in addition to the properties given in Definition 2.1, are:

(i) Symmetric against the core S 2 R2:
ðlðSÞ ¼ 1Þ;
lðVÞ ¼ lðMÞ ^ lðMÞ – 0 ) dðS;VÞ ¼ dðS;MÞ;
where d(S,M) is the distance in R2.
(ii) Inverse-linear decreasing w.r.t. points’ distance from the

core according to:
if r – 0
leSðVÞ ¼ max 0;1� dðS;VÞ
jrSj

� �
;

if r = 0
leSðVÞ ¼ 1 if S ¼ V ;

0 if S – V ;

�

where d(S,V) is the distance between the point V and the core S
(V,S 2 Rn) and r 2 R is constant.

Elements of this space are represented as ordered pairseS ¼ ðS; rSÞ where S 2 R2 is the core of eS, and rS 2 R is the distance
from the core for which the function value becomes 0; in the
sequel parameter rS will be denoted as the fuzzy support radius.
Definition 2.3. Let H2 be a linear fuzzy space. Then a function
f : H2 �H2 � ½0;1� ! H2 is a linear combination of fuzzy pointseA; eB 2 H2, given by

f eA; eB;u� �
¼ eA þ u � eB � eA� �

;

where u 2 [0,1] and operator � corresponds to scalar multiplication
of a fuzzy point, and +corresponds to fuzzy point addition.

If the points that represent the path are imprecise, then the
whole line should be described similarly to the imprecise point’s
description. In this section we will present a mathematical model
for such a fuzzy line.
Definition 2.4. Let H2 be a linear fuzzy space and function f a
linear combination of fuzzy points eA and eB. Then the fuzzy setfAB is a fuzzy line if the following holds:

fAB ¼
[

u2½0;1�
f eA; eB;u� �

:

Similar to a fuzzy point, fuzzy lines can be represented as a pair of
two fuzzy points. A fuzzy line is a minimal extension of a precise
line defined by two discrete points.
2.2. Spatial relations in R2 linear fuzzy space

Spatial relations (predicates) are functions that are used to
establish mutual relations between fuzzy geometric objects. The
basic spatial relations are coincide, between and collinear. In this
section, we present their definitions and basic properties.

The fuzzy relation coincidence expresses the degree of truth that
two fuzzy points are located at the same place.
Definition 2.5. Let k be the Lebesgue measure on the set [0,1] and
H2 a linear fuzzy space. The fuzzy relation coin : H2 �H2 ! ½0;1�
is the fuzzy coincidence represented by the following membership
function:

lcoin
eA; eB� �

¼ k aj eAh ia
\ eBh ia – ;

n o� �
:



40 Ð. Obradović et al. / Knowledge-Based Systems 38 (2013) 37–47
Proposition

\Fuzzy point eA is coincident to fuzzy point eB"

is partially true with the truth degree lcoinðeA; eBÞ:
The fuzzy relation contains or between is a measure that a fuzzy

point belongs to fuzzy line or that a fuzzy line contains a fuzzy point.
Collinearity is another fundamental relation between three

points in plane geometry. In the following, we present our defini-
tion of fuzzy collinearity in fuzzy linear space, as well as a method
for its practical computation.

Definition 2.6. Let eA; eB; eC 2 H2 be a fuzzy point defined in H2

linear fuzzy space and k be a Lebesgue measure of the set [0,1]. The
fuzzy relation coli : H2 �H2 �H2 ! ½0; 1� is then fuzzy collinearity
between three fuzzy points, and is represented by the following
membership function:
lcoli
eA;eB; eC� �
¼ k aj9u2R^9X 2 eAh ia

^9Y 2 eBh ia^9Z 2 eCh ia
^A¼BþuðC�BÞ

n o
:

Proposition

\Fuzzy points eA; eB and eC are collinear"

is partially true with the truth degree lcoliðeA; eB; eCÞ.

Remark. The fuzzy relation containsfor fuzzy line fAB and a fuzzy
point eC means that fuzzy points eA; eB and eC are fuzzy collinear.
3. Road feature extraction

In this work, we propose a modified edge extraction method for
road feature extraction. The best way to describe a road is to iden-
tify lane marks, which define lanes in almost any well-painted
road. Usually, this is done by applying some well-known edge
extraction method, such as the Canny and Sobel edge detector. Re-
sults from these methods usually contain relatively large sets of
discrete points. Instead of using precise discrete points, we propose
the use of fuzzy points. Also, we apply edge detection for a single
line, rather than the more common 2D convolution of an image
and operator mask. As can be seen in Fig. 2.3, lane markings are
well separated from other features. Fig. 3.1 illustrates the selection
process for a single line (row) from an image, and sequentially
shifting accumulators A and B along the line.
Fig. 2.3. Extracted set of fuzzy points. Each fuzzy point is represented as a white
circle.
Two types of points are distinguished during the extraction
process:

� Condition 0: A > B and jA � Bj > Threshold and
� Condition 1: A < B and jA � Bj > Threshold

If Condition 0 or Condition 1 is satisfied then the point is a can-
didate feature point.

Parameters of the presented algorithm are given bellow:

Delta: distance between two analyzed rows.
R: number of pixels that are used in accumulators A and B.
Threshold: sensitivity.

The pseudo code of the road feature extraction algorithm is
given in Listing 1:

The center of the extracted fuzzy point xS is a midpoint of inter-
val satisfied by Condition 0 or Condition 1, as illustrated in Fig. 3.2.

Lane detection algorithms depend on the precision (position) of
extracted road feature points. The approach presented in this paper
enables modeling this imprecision using fuzzy set. A consequence
is that lane detection algorithms based on fuzzy points are not as
sensitive to the precise estimation of edge points. Example ex-
tracted fuzzy points are shown in Fig. 2.3.
4. Road lane detection

In this section, we describe a novel algorithm for fuzzy line
detection from digital raster images (FLDetector). The algorithm is
implemented as a modified fuzzy c-means algorithm for clustering
sets of fuzzy points. Each fuzzy point belongs to a fuzzy line (clus-
ter centroid) according to a fuzzy relation fuzzy collinear. This
method allows one fuzzy point to belong to two or more fuzzy
lines.
4.1. Initialization of the FLDetector algorithm

The first step of the algorithm is aimed at identifying initial
groups of ‘‘line like’’ fuzzy connected sets of fuzzy points. Firstly,
all fuzzy points are spatially indexed by a GRID or MESH spatial in-
dex structure, where the cell size is not lower than the size of max-
imal support for all fuzzy points. Then, for every fuzzy point, a set
of fuzzy coincident points is determined. At the end of this step,
initial clusters are created using information from fuzzy coincident
points. In the ‘‘line like’’ fuzzy connected set of fuzzy points, ‘‘most
of them’’ are simply connected with not more than 2 fuzzy points,
and the sum of the distances between neighboring points is suffi-
ciently close to the maximal distance between overall points in the
set. The ‘‘most of them’’ statement is modeled as a fuzzy set defined
by the percentage of the number of points that satisfies certain
conditions. Fig. 4.1 illustrates two initial clusters of ‘‘line like’’ fuzzy
connected sets of fuzzy sets.

The aim of this algorithm is to find for each fuzzy point a set of
fuzzy coincident points. Fig. 4.2 gives an example of how fuzzy
points are assigned to corresponding cells in GRID.

Pseudo code of this initialization algorithm is given in Listing 2.
The first step is to fill the GRID with fuzzy points. After the GRID is
filled with fuzzy points, for each nonempty cell in GRID we can find
fuzzy coincident points only in neighbor cells, which is more effi-
cient than to check each fuzzy point with all others. The result of
this step is a graph of fuzzy points mutually connected by the fuzzy
relation coincidence. Now, it is relatively easy to find all ‘‘connected’’
fuzzy points, using for example a breadth-search algorithm. Final-
ly, the fuzzy filter ‘‘line lake’’ is used to create an initial set of can-
didate fuzzy lines.



Listing 1. Pseudo code for the road feature extracting algorithm.
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Fig. 3.2. Imprecision in edge detection.
Fig. 4.2. Fuzzy point cell assignments.
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The fuzzy filter ‘‘line like’’ extracts the set of points containing
exactly two single connected fuzzy points (extreme points) and a
finite number of mostly double connected fuzzy points (fuzzy points
that are fuzzy coincident with not more than two other fuzzy
Fig. 4.1. Example of two initial ‘‘line like’’
points from the set, where the sum of the distances of all fuzzy
coincident points from the set is sufficiently close to the distance
between extreme points).
fuzzy connected sets of fuzzy points.



Listing 2. Pseudo code for the initialization algorithm.

Listing 3. Pseudo code for the FuzzyLineDetector algorithm.

Table 5.1
Properties of the data set.

Number of images 50
Resolution 320 � 240
Color model YUV
Time of day �15:00 (3 p.m.)
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4.2. Fuzzy c-means based algorithm – FuzzyLineDetector

Now we can rearrange all fuzzy points according to a fuzzy rela-
tion fuzzy collinear and create new clusters of fuzzy collinear
points. For each cluster, we compute a new centroid which is a fuz-
zy line that is fuzzy collinear with all fuzzy points from the cluster.
The rearranging process is then repeated until two consecutive sets
of fuzzy lines are sufficiently close (see Listing 3).

The computational complexity of the algorithms is proportional
to the number of fuzzy points multiplied by the number of fuzzy
lines.
Table 5.2
Feature extraction parameters.

Gray scale image Y luma component (0 – black 255 – white)
Region of interest 320 � 120 (xMin = 0; yMin = 120; xMax = 320;

yMax = 320)
R 5
Threshold R ⁄ 20
Condition used in

extraction
0 transition from dark to light

Delta Distance between two possible consecutive line
values (0,1,2,3)

Table 5.3
Hough line detection parameters.
5. Experiments

The proposed approach has been implemented as a Java class
library and tested in two environments: (1) a Java application run-
ning on a PC using a data set; and (2) a Java application running on
an Android 2.1 platform. The same set of 50 images taken by a
smart phone camera was applied. In addition, our new approach
was compared with the classical Hough transform using the same
feature extraction algorithm. The aim of these experiments was to
check the correctness of our proposed approach against a set of
images taken in a real environment, and to check its suitability
(i.e. is it fast enough) as a real time smart phone application.
maxTheta Resolution of the angle calculation (180 corresponds to 1
degree and 360 corresponds to 0.5 degree between each
line) How many discrete values of theta will be checked!

neighbourhoodSize The size of the neighborhood in which to search for other
local maxima. The default value is 4.

Threshold The threshold percentage above which lines are
determined from the Hough array (between 10 and 30)
5.1. Data set

The data set used in this experiment consists of 50 images taken
by a smart phone camera. The overall properties of the data set are
shown in Table 5.1.



Fig. 5.1. (a) Image #1 from data set, (b) results of experiment 1.

Listing 4. Pseudo code of the Hough line detection algorithm tested.

Table 5.4
Experiment parameters and obtained results.

Data set image 1
Number of extracted points 83
Delta 4
Threshold 15
Maxtheta 360
Mean execution time FUZZY 0.047848 ms
Mean execution time HOUGH 0.636239 ms
Quality FUZZY 0.461
Quality HOUGH 0
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5.2. Feature extraction parameters

The feature extraction parameters used for the fuzzy and Hough
approaches are shown in Table 5.2 (Note: the same parameters
were used for both approaches).
5.3. Result quality evaluation method

For evaluation of the obtained results, we used formula (5.1) to
measure the level of quality. Level of quality is a real number of
Fig. 5.2. (a) Extracted points and lines for delta =
interval [0,1], where 0 corresponds to very poor quality and 1 cor-
responds to the best quality (all points are located on some line).

Let the extracted fuzzy points set contain n points and m lines
(the jth line is denoted as linej), and let maxDistance be the maximal
distance between a single point and line; then the quality, Q, is
calculated as:

Q ¼ 1�
Pn

i¼1minjðdistance linej; pointi

� �
Þ

n �maxDistance
: ð5:1Þ
5.4. Hough transform parameters

The Hough line detection algorithm tested here is sensitive to
the parameter values chosen. Hough line detection parameters
are shown in Table 5.3.

Pseudo code for the Hough line detection algorithm [1] used is
given in Listing 4.

5.5. PC Experiments

The following experiments were performed on a PC. Java appli-
cations were run on a Windows 7 64-bit Operating system, with
2, (b) extracted points and lines for delta = 1.



Table 5.5
Experimental parameters and results for delta = 2 and delta = 1.

Data set image 1 1
Number of extracted points 159 307
Delta 2 1
Threshold 15 30
Maxtheta 360 360
Mean execution time FUZZY 0.108905 ms 0.3311 ms
Mean execution time HOUGH 1.125577 ms 1.409117 ms
Quality FUZZY 0.49363884 0.51133020
Quality HOUGH 0.49594248 0.52376501
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4 GB RAM and an Intel Core2Duo 3.0 GHz processor. Execution
times were measured 1000 times because of the non-deterministic
behavior of the host computer (multithread operating system).

Pseudo code for the experiment performed is given below.

for each image in data set and

for delta in set {1,2,3,4}
execute: Feature extraction

for N = 1 to 1000

execute: Hough algorithm

execute: Fuzzy algorithm

calculate: mean of execution times for

Hough algorithm

calculate: mean of execution times for

Fuzzy algorithm
Fig. 5.3. (a) Image #10 from data set, (b) ext

Fig. 5.4. (a) Image #20 from data set, (b) ext
The experimental results are given in two parts: (1) several rep-
resentative images with fixed parameters, and (2) a graph of over-
all execution times.

5.5.1. Experiment 1
In this representative experiment, we analyzed every 4th

(delta = 4) line of the image shown in Fig. 5.1(a). Feature extraction
time is small, and is related to the small amount of extracted
points. Fig. 5.1 shows extracted points represented as circles.

Our proposed fuzzy algorithm performed 1000 times better
than the Hough algorithm. Because of the small amount of ex-
tracted points, the Hough algorithm returned empty result,
whereas the Fuzzy algorithm extracted two lines shown as black
bold lines in Fig. 5.1(b). Our fuzzy algorithm processed this image
(with 83 extracted points) almost 10 times faster than the Hough
algorithm (see Table 5.4).

5.5.2. Experiment 2
The second experiment was performed on the same image as

in Experiment 1 (see Fig. 5.1(a)). However, in the feature
extraction stage we analyzed every 2nd line (delta = 2) and every
line (delta = 1). In Fig. 5.2, extracted points are represented as
circles with half the radius of the fuzzy points extracted in
Experiment 1. The qualities of both the Hough and Fuzzy algo-
rithms in this example are almost the same. However, our Fuzzy
algorithm was still faster than the Hough approach (see Table 5.5).

5.5.3. Experiment 3
Based on the previous two experiments, results are almost the

same in cases where delta = 4, 2 or 1. However, for the case
racted lines for image #10 and delta = 4.

racted lines for image #20 and delta = 4.



Fig. 5.5. (a) Image #30 from data set, (b) extracted lines for image #30 and delta = 4.
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delta = 4, where we used a small number of points, execution times
were extremely fast. In the following experiment, we attempted to
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Fig. 5.7. Smartphone
extract road lanes using delta = 4 on several images (see
Figs. 5.3–5.5).

5.5.4. Experiment 4
In this experiment, we used all images from the Data set and

delta values between 1 and 4, to check the behavior of the both
the Hough and Fuzzy algorithms with respect to the number of
points.

As can be seen in Fig. 5.6, execution times for the Hough algo-
rithm linearly increase with increasing data points, albeit with a
nice dispersion. In contrast, our fuzzy algorithm is faster for a small
number of points (<200). However, a wider dispersion was ob-
served for the fuzzy algorithm for larger numbers of points
(>200), indicating that fuzzy algorithm execution times could also
depend on the position of points on an image, and the number of
detected lines.

5.6. Smartphone experiments

The following experiments were performed on a Smartphone
running Java on an Android 2.1 operating system, with 256 MB
RAM and a 667 MHz processor. Due to the relatively slow processor
(vs. a PC), execution times were measured 20 times (experiments
run on a Smartphone for approximately 133 min 50 ⁄ 4 ⁄ 20 ⁄ 2 s).

Pseudo code for the Smartphone experiment is shown below.
250 300 350 400 450 500
er of points

execution times.



46 Ð. Obradović et al. / Knowledge-Based Systems 38 (2013) 37–47
for each image in data set and

for delta in set {1,2,3,4}
execute: Feature extraction

for N = 1 to 20

execute: Hough algorithm

execute: Fuzzy algorithm

calculate: mean of execution times for

Hough algorithm

calculate: mean of execution times for

Fuzzy algorithm
The quality of the obtained results was the same as for the PC
experiments. However, execution times were several times slower
than on PC.

In the following example, we attempted to compare Smart-
phone results from both the Hough and Fuzzy algorithms, to deter-
mine suitable parameters (delta) for real-time applications of our
proposed Fuzzy algorithm.

As can be seen in Fig. 5.7, for the case where we have 100 points
the Hough algorithm runs in �500 ms, which is not suitable for
real time applications. In addition, in cases with <100 points, the
Hough algorithm is practically useless, and of poor quality. How-
ever, our fuzzy algorithm for acceptable quality works in almost
200 ms, which is approximately 4 frames per second. In cases with
>300 points, both algorithms require longer than 1 s.

6. Conclusion

In this work, we present a model of imprecise road lanes, based
on our previously published model of fuzzy imprecise points [13],
as the union of a linear combination of two fuzzy points. Using this
model, a fuzzy line can be represented with only two fuzzy points,
providing a simple, yet descriptive extension of the precise ideal
line. Imprecise spatial relations applied in this paper are based on
fuzzy relations between fuzzy points and fuzzy lines, while the pro-
posed algorithm for line detection is based on a modified fuzzy c-
means clustering algorithm, along with the proposed data models
and imprecise spatial relations. In addition to the ability to deal with
imprecise data, the proposed algorithm is characterized by reduced
computational complexity versus the standard Hough transforma-
tion. The algorithm’s computational complexity is proportional to
the number of fuzzy points multiplied by the number of fuzzy lines.

The proposed algorithm was tested on a data set consisting of
50 road pictures taken from the cockpit of an automobile using a
smart phone camera. The last experiment presented in this paper
shows that our proposed algorithm is applicable to real time lane
detection using a 667 MHz CPU 256 MB RAM smartphone.

However, our experimental results indicate that the proposed
algorithm is not well-suited for cases requiring larger numbers of
feature points. To overcome this disadvantage for imprecise points
and lines, new specialized fuzzy indexing structures analogous to R
tree, Quad tree and GRID should be developed. In fact, this is one of
the main research directions related to the development of fuzzy
linear space-based algorithms. Furthermore, in order to improve
the speed of lane detection, the introduced fuzzy relations could
form a basis for lane tracking algorithms. Finally, another useful fu-
ture research direction could be the development of an algorithm
for vanishing point extraction and prediction.
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