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Abstract— This paper proposes an approach for pedestrian
tracking using dead reckoning enhanced with a mode detection
using a standard smartphone. The mode represents a specific
state of carrying device, and it is automatically detected while
a person is walking. This paper presents a new approach,
which extends and enhances previous methods by identifying
in real-time three typical modes of carrying the device and using
the identified mode to enhance tracking accuracy. The way of
carrying the device in all modes is unconstrained to offer reliable
person-independent tracking. Based on the identification of
modes, a lightweight step-based tracking algorithm is developed
with a novel step length estimation model. The tracking system is
implemented on a commercial off-the-shelf smartphone equipped
with a built-in inertial measurement unit with 3-D accelerometer
and gyroscope. It achieves real-time tracking and localization
performance with an average position accuracy of 98.91%.

Index Terms— Pedestrian dead reckoning, smartphone,
real-time tracking, light-weight positioning algorithm, mode-
awareness.

I. INTRODUCTION

LOCATION Based Services (LBS) are becoming common
in everyday life nowadays. Knowing one’s location

is helpful in applications such as navigation, Augmented
Reality (AR) and assistive healthcare. Global Positioning
System (GPS) is able to provide users with sufficiently
accurate outdoor locations while performance deteriorates
significantly in indoor environment due to signal attenuation
within the closed space. Pedestrian positioning is intensively
studied to obtain location with better accuracy in literature.
Radio frequency based methods such as [1]–[3] use the
signal strength/arrival-angle characteristics of Bluetooth or
Wi-Fi signals to estimate the distance of the signal transmitter
from known anchor points and then performing localization by
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fingerprinting and trilateration/triangulation. However, these
methods suffer greatly from physical environment variations
and multi-path effects. Another popular alternative is to use
Inertial Measurement Unit (IMU) that consists of different
kinds of sensors, such as accelerometers, gyroscopes and
magnetometers, to track the target with proper motion models.
IMUs [4]–[6] are mounted on foot or attached to a certain part
of human body collecting desired data to obtain motion infor-
mation. Many methods are proposed to compensate sensor
drift/error in order to enhance the accuracy and robustness of
the positioning system. For instance, when acceleration along
walking direction is used to estimate distance by double inte-
gration, Zero-Velocity-Update (ZUPT) [4] will reset the error
accumulation of accelerometer in stance phase of walking.
Apart from dedicated systems with IMUs, mobile devices,
typically smartphones, become natural and ideal alternative
platforms for pedestrian localization thanks to the rapid devel-
opment of such devices with powerful processing capacity and
integration of different sensors. Several recent works [7]–[13]
have been done in this field. Step based Pedestrian Dead
Reckoning (PDR) combined with step length and orientation
estimation is a common strategy as it does not introduce
the double-integral of accelerometer drift error into the
system. The whole system can be reinforced by a fusion
filter and context/map information [14], [15]. However,
existing approaches are limited to and only able to perform
tracking when the smartphone is carried in a very defined
and constrained way during the entire walking period, which
is not realistic under the PDR context. Meanwhile, [20], [21]
have investigated the issue of mode recognition (i.e. ways
of carrying a phone) during walking but none of them have
conducted practical tracking of pedestrian involving change
of mode of the smartphone. The most commonly used mode
in literature is holding the smartphone in hand in front of the
body [10], [12], [17], [21], which introduces great limitations
and impracticalities to the developed system in real life
applications.

To build a more robust tracking system, an IMU-based
approach that adds identification of the mode in which the
phone is carried and combines it with PDR is proposed in
this paper with smartphones as the target platforms. In our
previous work [23], an Enhanced PDR (EPDR) approach is
proposed, which is also able to support pedestrian tracking in
different modes with a typical placement of the smartphone.
While this paper extends EPDR with unconstrained placement
of the phone in different modes and proposes Multi-Mode
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PDR (MMPDR). The main contributions of the paper are listed
as follows.

1. In MMPDR, three modes during walking, i.e., holding
a device in front of the body, holding and swinging
freely with a hand and keeping the device in a front
trousers pocket, are identified and utilized to enhance
both positioning and tracking. There are few constraints
on how the device is carried, thus the independence on
the carrier/user is achieved.

2. Steps are detected based on the knowledge of the walk-
ing modes thus the computation effort can be reduced
compared to previously reported methods.

3. A new step length model that supports users with
different height, gender and walking speed is proposed,
resulting with better accuracy and robustness.

The tracking is based on the assumption of the known
initial position. The proposed method is implemented as a
light-weight system and tested on a commercial off-the-shelf
smartphone. It achieves real-time localization and tracking
of the pedestrian with meter-level accuracy on long
distances, without correction of position using other sensing
techniques.

The remainder of the paper is organized as follows.
Section II gives a brief description of PDR problem formu-
lation and related work. Section III introduces the proposed
MMPDR approach in detail. Implementation and experimental
evaluations can be found in Section IV, as well as comparison
with previous works. Finally, conclusion remarks and future
works are presented in Section V.

II. PROBLEM FORMULATION AND RELATED WORKS

PDR systems are continuously updating a state vector ST ,
typically an x-y coordinate which describes the target location
in an environment from a known initial position. The position
state vector is updated every time new sensor data arrive or a
valid step is detected in step-based approaches. In the former
one, an IMU attached to certain part of the body or mounted on
the shoe provides accelerometer readings along the direction
of walking and the data are double integrated to obtain the
travelled distance. ZUPT [4] or self-resetting [16] algorithms
are developed to compensate the accumulated error caused
by sensor drift and noise. In step-detection based methods,
the function describing the system is shown in equation (1)
evolving from previous step position [xs−1, ys−1]T to the next
position [xs , ys]T where Ls represents the length of a step
and θ is the angle describing the orientation of the step in a
defined coordinate plane, respectively.

[
xs
ys

]
=

[
xs−1
ys−1

]
+ Ls

∗
[

sinθ
cosθ

]
(1)

Accelerometer readings are continuously collected and
processed in order to detect steps. Mikov et al. [8] and
Qian et al. [9] calculate the magnitude of the overall 3-axis
acceleration and [10] uses only one axis of accelerometer data
during walking when carrying the device in a pre-defined
way. In the method presented in [11], the acceleration on
global z-axis, which is vertical to ground, is utilized as it only
investigates the situation when the smartphone-shaped IMU is

placed in the front trousers pocket. Gaits information in the
acceleration signal is detected and recognized as steps mainly
based on thresholding and zero-crossing. After the detection of
a valid step, the step length can be estimated based on various
step length models available in the literature as expressed by
equations (2) to (4). A static model [17] estimates step length
as a constant relative to height and gender with h represents
the height, k1 equals to 0.415 for male and 0.413 for female
in (2). This model is relatively simple and other enhancements,
shown in (3) and (4), are proposed in [18] and [19] where step
length is modeled using the acceleration vertical to ground
while walking. The maximum and minimum value of vertical
acceleration during one step, denoted by amax and amin, are
used in (3) to calculate the step length and k2 represents the
constant value to obtain appropriate step length. While in (4),
the step length is related to all samples of vertical acceleration
during one step. ai and N represent the vertical acceleration
sample and the total number of samples in one step. k3 is
also a constant value used for acquiring proper length of
a step. Regarding the mode in which the phone is carried,
[20] investigates the mode recognition of carrying the IMU
but the mode of keeping the phone-shaped IMU in pocket
is not included, which is a typical mode in PDR context.
Also, the mode recognition involves computationally intensive
procedures of both time domain and frequency domain feature
extractions and no experimental results regarding walking with
different modes are presented as [20] mainly focuses on step
detection.

Ls = k1
∗ h (2)

Ls = k2
∗ 4
√

amax − amin (3)

Ls = k3
∗ 3

√∑N

i=1
|ai | /N (4)

Finally, the step orientation is introduced to accumulate
the detected steps in the direction of walking. Gyroscope
and magnetometer can be used in determining orientation as
gyroscope is able to provide pitch-roll-yaw angular rotation
rate and attitude of the device with respect to a reference frame
and magnetometer can detect magnetic field around the device
to obtain orientation like a compass. Besides, work presented
in [11] uses Principal Component Analysis (PCA) to determine
the axis of motion, i.e., direction of motion, in a global frame
and achieves unconstrained placement of the IMU in the front
trousers pocket.

A PDR system works on the basis of combining step length
and orientation and the positioning accuracy of the system in
indoor environment can be further improved when considering
the floor plans of buildings with turn detection and map
matching [24], [25].

In [21], a pedestrian navigation system is developed address-
ing different step modes and device poses (same as modes
defined in this paper) during walking. Multilayer Percep-
tron (MLP) and Support Vector Machine are used as classifiers
to determine the step modes (walking, running and going
up/down stairs) and device poses (texting, swinging, pocket
and phoning) by offline extraction of complex time domain
and frequency domain features of sensor data. Also, feature
vector training is required for each user before tracking.
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Fig. 1. Definition of mobile phone’s axes and modes in MMPDR.

Nevertheless, the pedestrian tracking experiment presented
in [21] is conducted in texting mode only.

To the best of our knowledge, existing works developing
PDR on smartphones or using IMUs have limitations that
only one or several ways of carrying the device, referred to
as modes, can be supported separately and involve computa-
tionally intensive methods, such as FFT and PCA, which are
not ideal under PDR context with the requirement to operate
in real-time. The Multi-Mode PDR, MMPDR, presented in
this paper differs to existing approaches by being able to
identify the mode of carrying the phone automatically during
the process of localization and tracking. The mode information
is used to improve tracking accuracy while allowing phones to
be carried in a more natural way. MMPDR currently supports
three typical modes of carrying the device, uses a light-weight
algorithm to detect the steps during walking and then uses this
information to track the smartphone user in real-time.

III. MMPDR TRACKING SYSTEM

This section introduces the proposed approach with an
overview first, followed by mode classification, step detection,
step length estimation and orientation determination,
respectively.

A. Overview

Fig. 1(a) shows the axes defined for the mobile phone.
According to the placement of the device, the modes of
carrying it are categorized as follows (see also Fig. 1):
HOLDING, the user holds the phone in hand in front of
the body as in Fig. 1(b), SWING, the phone is held in
hand and swung freely besides human body as in Fig. 1(c).
POCKET, the phone is placed in the pocket while walking.
As there are many possible pocket placements of the phone,
this paper investigates the situation of the front trousers pocket
as in Fig. 1(d). No further constraints on the ways how the
phone is carried are imposed.

In our approach, all sensor data are collected by a cus-
tomized application developed and run on an iPhone 5s with
a sampling frequency of 50Hz. The built-in IMU of the
smartphone is accessed using the Application Programming
Interface (API) provided in Xcode sampling accelerometer
and gyroscope data. Accelerometer data used are gravity

Fig. 2. Overview of MMPDR tracking system.

acceleration and user acceleration, with units in g (∗9.8m/s2).
Gyroscope data collected are angular rotation rate and the
phone’s attitude in radians defining the pitch-roll-yaw angle of
the phone’s orientation with respect to a reference frame where
the phone’s x-y plane is parallel to the ground. By taking in
these sensor data together with the timestamps of samples,
our approach can identify different modes and employ a light-
weight algorithm to accomplish the task of pedestrian tracking.
Fig. 2 gives an overview of the proposed step-based MMPDR
Tracking System (MMTS). After initialization, the iteration of
updating the position is triggered every time new sensor data
are sampled. Upon receiving sensor data, mode identification
is firstly done to determine the current mode of carrying the
phone. An additional, temporary mode TRANS is introduced
here, representing the transition between normal/main modes.
Then, the step detection is performed according to current
mode of the phone. If no valid step is detected, no further
processing is required and the system waits until new sensor
data arrive. Alternatively, the length and orientation of a step
are estimated if a valid step is detected. These results are used
to update the position of the pedestrian according to the motion
model in (1). The same procedure is performed after acquiring
every new reading from the sensors. The following sections
describe each part of the tracking system as well as its features
and advantages.

B. Mode Classification

Unlike the classification methods commonly found in
literature [20], [21], which classify the modes by extracting
statistical features of sensor data after every sample, the
mode information in the proposed approach is determined
by a Finite State Machine (FSM), shown in Fig. 3, that has
4 states covering all modes and transitions between modes.
The three main modes (states) of the phone, i.e., HOLDING,
SWING and POCKET, are bridged by the TRANS state, which
corresponds to the transition between the main modes.
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Fig. 3. Mode finite state machine.

TABLE I

PSEUDO CODE FOR MODE FSM

The pseudo code presented in Table I summarizes the
process of mode classification. During initialization of MMTS,
the FSM state is initially set to HOLDING with reason-
able assumption that the implemented smartphone application
requires certain user interaction to start the system.
Afterwards, the FSM either stays in a main mode state, when
no transition motion is detected, or is otherwise triggered to
TRANS state.

Transition motion is characterized by the orientation change
of the phone and is detected through monitoring the angular
rotation rate of the phone in y-axis and z-axis, by thresh-
olding. As can be seen in the pseudo code, the condition of

TABLE II

ROTATION RATE MONITORED FOR TRANSITION DETECTION

Trans Motion is satisfied differently according to the current
state of the FSM. The rotation rate monitored in each mode is
also tabulated in Table II. For HOLDING mode, the orientation
of the phone is relatively stable so both y-axis and z-axis
rotation rate, ry and rz , are monitored. While for SWING
mode, only ry is monitored as the phone rotates around z-axis
in the regular motion during walking in this mode. Similarly in
POCKET mode, only rz is monitored to detect the transition
motion. Ry and Rz represent the y-axis and z-axis rotation
rate threshold used to detect a transition motion.

When the monitored rotation rate exceeds the threshold,
the transition motion is identified and the FSM state will
immediately change into TRANS state. The state before
transition motion is recorded as Sbt at the same time. The
TRANS state is kept throughout a two-second window and
corresponds to a 100 sample interval. During the time window,
features in 3-axis gravity acceleration, gx , gy and gz , are
monitored to determine which state the phone is transiting
into, namely Sat . The gravitational acceleration in HOLDING
is unique as gravity is split on y-axis and z-axis, while gravity
mainly resides on x-axis for SWING mode. The analyses
on y-axis and z-axis gravity thresholds in HOLDING mode,
GHy and GHz can be found in Section III-C.

However, for POCKET mode, the gravity characteristic is
not obvious since the position of the phone inside a trousers
pocket is unpredictable due to various shapes of pockets and
fabric of the trousers. Considering the fact that there are
only two possible modes the phone can transit into with the
knowledge of the mode before transition, the condition Trans
to HOLDING/SWING/POCKET in Fig. 3 can be simplified
as described in the pseudo code in Table I where only Trans
to HOLDING/SWING is evaluated. For the Trans to SWING
condition, the absolute value of x-axis gravity gx is used to
support swinging the phone both in left and right hand. The
extra constraint on gz is used for better differentiation between
transition into SWING or into POCKET from HOLDING
mode. A positive value of gz indicates the phone’s screen
is facing the ground (the value is negative in HOLDING
mode) so its reading should not excess a positive threshold
when transition to SWING from HOLDING mode. Details of
parameters tuning of the algorithm presented in Table I can
be found in Section IV-A.

The above-implemented FSM used to determine the mode
possesses great scalability as the FSM can be further extended
to support additional modes of carrying the phone, all bridged
by the TRANS state.

C. Step Detection

Detecting steps accurately is vital and will significantly
influence the positioning performance of the system. As can be
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Fig. 4. Magnitude of acceleration in different modes.

Fig. 5. Analysis in the HOLDING mode.

seen from Fig. 4, the magnitude of overall 3-axis acceleration
with gravity included shows distinctive features in different
modes and is hard to find a unified way to detect steps by
simple thresholding. In the proposed approach, the steps are
detected with knowledge of the current mode. Based on the
recognition of current mode, the acceleration data used in
step detection are vertical, y-axis and z-axis user acceleration
in HOLDING, SWING and POCKET mode, respectively,
as summarized in Table III.

In developing the light-weight step detection scheme,
accelerometer data of gravity acceleration and user accelera-
tion are used. Bertram and Ruina [22] pointed out that human
step frequency is in the range of 0.5-5Hz so the raw user
acceleration data sampled at 50Hz is firstly smoothed by a
low pass filter with cut-off frequency at 5Hz.

For the HOLDING mode, the vertical user acceleration
is in the direction vertical to ground and the accelerometer
data from a single axis are insufficient to obtain vertical
acceleration. It is observed that different people tend to hold
the phone differently with varying angles between the phone’s
x-y plane and the horizontal plane. A cross-section of the
plane vertical to ground and parallel with walking direction
is illustrated in Fig. 5. The vertical acceleration is calculated
in the way that the angle ϕ is firstly found out utilizing the
gravity acceleration of the phone in y and z axes as shown in
equation (5). The vertical user acceleration, denoted by auv,
is then calculated by combining the components of
y-axis and z-axis user acceleration in vertical direction as in
equation (6), where gy , gz , auy , auz denotes the readings of
gravity acceleration on y and z axes, as well as user accel-
eration on y and z axes, respectively. The scheme possesses
a favorable feature that it works accurately for people with
different preferences in holding the phone and is also immune

Fig. 6. Vertical acceleration and ϕ in HOLDING mode.

to angle changes in a continuous walk. As shown in Fig. 6, the
correct vertical acceleration can be obtained when the angle ϕ
varies between 0 to π /2.

ϕ = atan(abs(gz/gy)) (5)

auv = auz
∗ sinϕ + auy

∗ cosϕ (6)

After the above analysis in HOLDING mode, the threshold
used in TRANS to HOLDING condition in Table I can be
explained as follows. Referring to Fig. 5, gravity is split in
y-axis and z-axis, the value on each of these two axes is
equivalent when ϕ is 45° and equals to 0.707 (

√
2/2) in an

ideal case. However, the y-z plane of the smartphone may
not be ideally perpendicular to the ground and gravity will
also split on x-axis due to variations in human posture in
real life situation. In order to strengthen the robustness of
the mode recognition against variations, HOLDING mode
should be recognized even if the phone is rotated around
y-axis by an angle of η. In rare conditions where user is
holding the phone in a slightly tilted angle (around y-axis),
the magnitude of gravity component is reduced on y-axis and
z-axis, which should also be taken into consideration when
setting the gravity thresholds GHy and GHz in Table I. The
relation of η, GHy and GHz is expressed in equation (7).
In general postures when people interact with the smart-
phone in HOLDING mode, η should not exceed 30° to
allow user interacting with the phone. In order to recognize
HOLDING mode when ϕ varies between 0 to π /2, the thresh-
olds GHy and GHz should be equivalent since the dominant
gravity component is along y-axis and z-axis when ϕ < 45°
and ϕ > 45°, respectively. Therefore, GHy = G Hz = 0.65
when η equals to 30° is selected.

η = arctan(
√

1 − G H2
y − G H2

z/G H z) (7)

The step detections in all three modes are based on finding
the peak value in the corresponding filtered and processed
user accelerations (Table III). For HOLDING and POCKET
mode, only positive peak is detected while for the SWING
mode, both positive and negative peaks are detected since the
phone experiences the motion similar to a pendulum. The basic
idea of detecting a valid step is that the absolute value of the
peak is greater than a given threshold. However, the following
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TABLE III

ACCELERATION USED IN STEP DETECTION IN DIFFERENT MODES

Fig. 7. Performance of additional criteria in step detection.

additional criteria are also considered in our algorithm to
achieve better performance.

Criterion 1: Maximum step frequency is 5Hz [22] so there is
a minimum 0.2s time interval between two consecutive steps.
Every time a valid peak is found, its timestamp is compared
to the timestamp of the previous valid step, making sure that
the minimum time interval between steps is satisfied.

Criterion 2: False peaks still exist in the filtered signal and
they often appear before the true peak corresponding to a valid
step. Thus, a False Peak Rejection (FPR) mechanism is added.
After detecting a positive/negative peak, no negative/positive
peak should be identified in the following nfpr acceleration
samples where nfpr is the size of the FPR window in number
of samples.

Fig. 7 shows the performance of the two criteria when
detecting steps in POCKET mode using the z-axis user
acceleration. The threshold is set to 0.2g and nfpr = 3.
When only criterion 1 is applied, the positive peak above
threshold is recognized as a step as long as the 0.2s time
interval is satisfied. Meanwhile, false peaks are rejected when
FPR in criterion 2 is utilized but one extra step is identified.
By combining both criteria, steps are detected on true peaks
corresponding to a step and a more accurate result is achieved
with a consistent delay of 3 data samples after the peak for
all valid steps.

After detecting valid steps, the proposed approach records
the variable of step frequency indicating the number of steps
per second. During initialization, the frequency is set to zero.
The frequency is obtained as the reciprocal of the time interval
between two consecutive steps. If no steps have been detected
for 2 seconds, corresponding to a minimum step frequency
of 0.5Hz, the variable is then reset to zero. Therefore, after

detecting a valid step, the step is interpreted as the initial
step from the motionless state to walking mode if the step
frequency is found to be zero. It is also an indicator about
the motion state of the tracking target, i.e., standing still or
walking.

It should be noted that valid steps exist during the
two-second TRANS period but the accelerometer data are
ambiguous for step detection since the acceleration data are
corrupted during transition motion. As a result, no step detec-
tion is performed during the transition period and the steps in
TRANS mode are compensated after transition finishes. Based
on the assumption that before and after the transition, the
subject maintains the same behavior of either walking or being
in motionless state, the number of steps compensated during
the transition period Nc is approximated by the product of the
interval of transition tt and the last updated step frequency
before transition fs followed by a round function, rounding to
the nearest integer as shown in equation (8).

Nc = round(tt ∗ fs ). (8)

D. Step Length Estimation

Many models of step length are proposed previously in
literature and have been introduced in Section II. While in
this paper, a new model is proposed to estimate the step
length. Bertram and Ruina [22] investigated 12 subjects on
multiple walking speed and step frequency relationship. By
analyzing its result data, it is deduced that step length Ls
has approximately a square root relation with step frequency.
By combining other models, the proposed step length model
relative to height, gender, and step frequency is presented in
equation (9) where k is a constant and tuned to 0.3139 for
male and 0.2975 for female, h is the height of the subject
and the units of step length is in meters. The rationale for
the setting of k can be found in Section IV-C. The calculated
step frequency will affect the accuracy of the model. Although
frequency domain analysis techniques such as FFT are able to
obtain a steady step frequency value, the proposed approach is
strengthened by a less computationally intensive FPR mecha-
nism in step detection. Therefore, the step frequency obtained
will be more stable and not influenced by the false peaks in
acceleration for more accurate step length estimation.

Ls = k ∗ h ∗ √
f s (9)

For the initial steps from motionless to walking, fs cannot
be calculated since only one step timestamp is available.
So a constant step length according to (2) is set as the initial
value. As for the compensated steps, the step frequency used
in calculating the number of compensated steps is also used for
estimating the length of compensated steps. The accuracy of
the model and comparison with previous models are presented
in Section IV-C.

E. Orientation Determination

Orientation helps to accumulate steps in the correct direction
to form a path indicating the walking track. In the proposed
approach, orientation is determined by the yaw data from
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Fig. 8. Example of yaw data in different modes.

the phone’s attitude information, which indicate the angle
turned around the phone’s z-axis and the value is in range
(−π , +π]. Fig. 8 presents an example of yaw data in different
modes when walking in a straight direction and the last part
in HOLDING mode illustrates the 180° ambiguity issue in
opposite direction for better understanding of the following
analysis.

For HOLDING mode, the yaw data are valid and can be
directly used as the θ needed for updating position in (1) when
the phone is pointing to the same direction of walking. The
attitude of the phone is relatively steady during walking and
making a turn also corresponds to an equivalent change in the
value of yaw data.

While for SWING and POCKET mode, the yaw data
obtained from the sensor need to be processed to get the
accurate orientation of walking.

It should be noted, oscillation in yaw data is introduced
as the attitude of the phone is coupled with the motion of
hand and leg in SWING and POCKET mode, respectively.
For SWING mode, the oscillation is slight as the phone
experiences the motion similar to a pendulum and the attitude
change is minor during the motion. Meanwhile, the oscillation
is more significant in POCKET mode when the phone rotates
with the motion of the leg. In order to remove the oscillation,
an averaging technique is applied to the yaw data within the
duration of the step. To keep consistency for all modes, the
averaging scheme is applied to HOLDING mode as well to
calculate the orientation of the step from the recorded yaw
data. Further, to achieve more accurate performance under
POCKET mode, the yaw data are averaged every 2 steps
since the phone is put in one side of the trousers pocket with
a recurring feature every 2 steps. If averaging yaw data is
performed every step, the result orientation would fluctuate
around the true direction and the path may get serrated.
In addition, while performing the averaging procedure, the
180° ambiguity issue would lead to erroneous result when
directly averaging the raw data. Thus an extra calibration
process is added to solve the ambiguity and it is outlined in
the pseudo code in Table IV where ωi is an array holding
temporary values during processing, average is the function

TABLE IV

PSEUDOCODE FOR YAW DATA CALIBRATION

getting the numerical average of an array and the calibrated
average value of the array is obtained as Oc.

The offset in the yaw data can be observed after the
oscillation is removed by averaging. An example is illus-
trated in Fig. 8 with red dashed line, indicating the offset
in POCKET mode. The different preferences of holding the
phone in SWING mode and distinctive placements of the
device in POCKET mode are reflected in varying values of
the offset. To address the issue, an Adaptive Offset Com-
pensation (AOC) scheme is developed, making the proposed
approach capable of correct tracking for different targets with
no constraints in both SWING and POCKET mode.

The idea of AOC scheme is to train a specific offset for
compensation using the yaw data collected within the first few
steps after transition into SWING/POCKET mode, referred
to as training stage. It is assumed the target to be tracked
maintains the direction of walking during transition and the
training stage, both having the same direction with the last
valid step before transition. In the implementation of the
AOC scheme within the tracking system, correct direction
of walking is firstly obtained from yaw data as the phone
is initially in HOLDING mode. The AOC process takes
place every time a transition is made into SWING/POCKET
mode and is presented in the pseudo code in Table V where
avg_cali represents the process of the averaging scheme to
get step orientation from an array of yaw data with necessary
calibration as in Table IV to resolve the 180° ambiguity.
Firstly, the last recorded step orientation before transition, Ob ,
is saved as the baseline for offset training. For SWING mode,
the first calculated MSWING step orientations using the raw
yaw data equal to the combination of step orientation baseline
and the introduced offset. Therefore, the trained offset is
obtained as the difference between the average orientation of
the MSWING steps and Ob. The offset training in POCKET
mode has similar processing procedures except the following
two features: 1) The step orientations are calculated every
two steps. 2) The orientation of the phone may change right
after putting it into pocket and will maintain a steady attitude
afterwards. As a result, the orientations calculated for the first
Momit steps after transition into POCKET mode are omitted.

After the offset training stage, the trained offset is used
for steps afterwards, compensating the offset introduced in
SWING/POCKET mode. The scheme is adaptive as the
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TABLE V

PSEUDOCODE FOR ADAPTIVE OFFSET COMPENSATION

trained offset is able to adapt to arbitrary features of pedes-
trians with different preferences in keeping the device in
SWING/POCKET mode. Besides, the actual orientations of
steps used in tracking the pedestrian during offset training
stage in both modes equal to the value of Ob .

As for the orientation of the compensated steps, the step
orientation used is the same as the last valid step detected
before transition since the yaw data can also be corrupted
during transition motion.

IV. EVALUATION

This section presents the experiment setup, parameters
tuning of MMTS and evaluations of the system in terms of
mode classification, step length estimation and tracking of
pedestrians.

A. Experiment Setup & Parameter Tuning

To carry out experiments, an application implementing the
MMTS is developed and run on an iPhone 5s. Also, all sensor
data, sampled at 50Hz, are recorded for more comprehensive
offline analyses. In realizing MMTS, the tuning and rationales
of parameter selections are detailed as follows.

In the mode classification algorithm (Table I), the threshold
of gravity acceleration used in recognizing HOLDING mode
is 0.65 for both GHy and GHz . As analyzed in Section III-C,
a 30-degree rotational margin around y-axis of the
phone is allowed in HOLDING mode. For recognition of
SWING mode, the x-axis and z-axis threshold GSx and
GSz is set to 0.9 and 0.4, respectively. For GSx , it can be
set to 1 in ideal case, i.e., gravity falls solely on x-axis.
In practical implementation, the threshold is set to 0.9,

allowing a 26-degree rotational margin around y-axis. Within
the margin, SWING mode can be correctly recognized and the
variations among different people are accommodated. Regard-
ing the rotation rate thresholds in detecting transition motion,
namely Ry and Rz in Table I are set to 3rad/s and 5rad/s,
respectively. Details of these two parameter selections can be
found in Section IV-B.

In step detection algorithm of MMTS, the FPR window size
nfpr equals to 3 samples in POCKET mode and 6 samples in
HOLDING and SWING mode. These values are selected by
considering the maximum human step frequency of 5Hz [22],
which corresponds to 10 samples at 50Hz sampling rate.
In POCKET mode, the acceleration signals have a feature
where false peaks and peaks with minimum amplitude in
one period follow very closely to the true peaks as shown
in Fig. 7. A large value of nfpr will result in the true peak
corresponding to a step being rejected. Therefore, nfpr value
in POCKET is set to 3 samples to remove small fluctuations
close to the true peaks. This is the maximal possible value
without causing true peaks being rejected and at the same time
avoids local false spikes close to the true peaks. In HOLDING
and SWING mode, the periodic acceleration signal coupled
with human motion is similar to sinusoid waves corrupted
with possible false spikes in the middle of two steps. A small
value of nfpr will have no effect in rejecting false peaks
in HOLDING/SWING mode. Therefore, the value of nfpr is
set to 6 samples, which is sufficiently long to remove the
misleading fluctuations without rejecting the true peaks. The
above settings of nfpr correspond to a sampling frequency
of 50Hz and should be changed proportionally with different
sampling rate.

The parameter setting in orientation determination algorithm
includes the number of steps used in offset training phase of
AOC scheme. In MMTS, the pedestrian is assumed to maintain
the direction of walking during transition and the training
stage, both having the same direction with the last valid
step before transition. The number of steps used in training
stage should be chosen to minimize the time needed for
offset training and at the same time avoid relying on a single
orientation value by averaging in several steps. For SWING
mode, the step orientation of three steps, i.e., MSWING = 3, are
averaged to obtained the trained offset. While the orientations
of the first two steps when transiting into POCKET mode
are omitted since the attitude of the phone may change right
after putting into pocket. The following four steps are used
to train the offset since the orientation in POCKET mode is
calculated on a two-step basis. Therefore, MPOCKET = 6 and
Momit = 2.

B. Mode Classification
By using the parameters presented in Section IV-A, experi-

ments were conducted to evaluate the performance of the mode
classification algorithm with 17 participants in different age
groups from 22 to 65 years old. Everyone took an 80-meter
straight walk and the mode of carrying the phone was changed
freely during the experiment. The subjects were only informed
of the three modes in keeping the device and no additional
information was provided.
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TABLE VI

EXPERIMENTAL RESULT OF MODE CLASSIFICATION

In the experiment, a total number of 106 transitions between
pairs of the three modes were made and the results by applying
the proposed mode classification approach are summarized in
Table VI. 8 transition motions, 7.55% of total transitions, are
missed in situations where the monitored rotation rate does
not surpass the threshold. Despite the wide age range of the
participants, the rotation rate is proved to be a reasonable indi-
cation for detecting transition motion. In the missed transition
motion, the maximum rotation rates in y-axis and z-axis are
in range of 2.47-2.90rad/s and 3.79-4.77rad/s, respectively.

For the detected transitions, the accuracy of classification
in percentage is listed in Table VI, all achieving over 89%
accuracy. The HOLDING mode is recognized with highest
accuracy as the gravitational acceleration feature in HOLDING
mode is unique. Also observed from the results, 2 false tran-
sitions are triggered when no transition motion is performed.
The false trigger rate is as low as 1.89% since the rotation
rate in the monitored axis in each mode is stable during
regular walking motion. By using the defined thresholds in
the approach, a detection rate of 92.45% is achieved while
false trigger into TRANS state is effectively avoided.

C. Step Length Estimation

In order to obtain the value of the constant k in (9) with
better step length estimation accuracy for subjects with varying
height, gender and walking speed, experiments are conducted
and the performance of the step length model is compared
with existing models in (2) - (4) as well. Since the models
in (3) and (4) use the vertical acceleration to estimate the step
length, experiments and comparisons are carried out in the
HOLDING mode. The acceleration data and timestamp are
recorded by the application.

Ten subjects, five males and five females with height
in range of 1.56m-1.83m, participated in the experiment.
Everyone was asked to perform three independent walks in
a 28m corridor with slow, moderate and fast walking speed,
respectively. Then, different step length estimation methods
are applied to each data set to calculate the distance travelled.
As k1 is already defined, the constants in other models,
k, k2, k3, are tuned to a value so that the average of all
estimated distances in each model is 28m, i.e., the real
distance. The method applied in tuning the constants uses a
similar approach as in [8] by optimization analysis based on
experiment data, achieving minimum error performance for
all data sets. In this way, k is tuned to 0.3139 for male and
0.2975 for female subjects. The results of estimated travelled
distances for each model according to (2)-(4) and (9) are
summarized in Table VII where minimum, maximum, median

TABLE VII

STEP LENGTH MODEL COMPARISON

Fig. 9. Screenshot of the developed application.

value of estimated distance and standard deviation (STD) are
presented.

A common feature revealed in the test data is that the
step count for each individual decreases when walking speed
increases. With a faster walking speed, the step frequency is
also higher and this proves that step length is proportional
to the step frequency. Also, variations in walking speed are
observed since different walking speeds of slow, moderate and
fast are determined by each subject. The time taken in the
28m walk varies from 14.9s to 38.76s among ten subjects,
which corresponds to an average walking speed range of
0.722m/s to 1.879m/s. As can be seen from the results of
estimated distances in Table VII, the median values of all
methods are close to the real distance, providing an acceptable
performance in general cases. While for STD, static method
using (2) is obviously greater than the other methods. The
static model estimates the step length as a fixed value for
every subject but the step count in all experiments ranges from
32 to 54 steps for the same travelled distance of 28m, resulting
in large variations in estimated distance. Of all the models, the
proposed one estimating step length according to (9) achieves
the minimum STD value, indicating the robustness of accurate
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Fig. 10. Tracking of pedestrians results in single mode. (a) HOLDING. (b) SWING. (c) POCKET.

step length estimation for subjects with varying height, gender
and walking speed. In addition, the proposed model is also less
computationally expensive compared to (3) and (4). It only
needs two timestamp samples of detected steps in estimation,
sparing the effort to record or monitor all the acceleration data
within one step.

D. Tracking of Pedestrians

Multiple tracking experiments were conducted to evaluate
the tracking performance of MMTS. Fig. 9 is a screenshot of
the developed application implementing MMTS. The figure
in the application illustrates the layout of Level 2 of Science
Center Building, the University of Auckland, with an area
of 70m∗50m. The dash line on the map outlines the reference
path travelled by the subjects in the experiment from point A
to point B with a total distance of 96.33m and the duration of
the walking is about 90 seconds. Since the step length model
in the proposed approach is relevant to the height and gender
of the target to be tracked, these information can be adjusted
using the textbox and switch above the map for different
test subjects, whose default values are set to height 1.73m
and gender of male. Similar to [12], position and heading
errors are measured by comparing the tracking result with
the reference path in quantifying the performance of MMTS.
Position error is obtained by calculating the distance between
reference position and user location at every meter of the
travelled distance. Heading error is evaluated by comparing the
step orientation with the direction of reference path for every
step. Therefore, the average/median position/heading errors
of a path (values presented in Table VIII to Table X) are
numerical average/median of all measured position/heading
errors along the path.

Experiments testing the MMTS are firstly carried out track-
ing a male subject with height 1.73m in single mode for the
walking path from A to B along the corridor. The walking

TABLE VIII

TRACKING STATISTICS – SINGLE MODE

path is plotted on the screen in real-time during walking.
To distinguish the path walked in different mode, different
colors are used for drawing the path with red for HOLDING,
blue for SWING and green for POCKET mode, respectively.
The tracking results produced by the smartphone application
are illustrated in Fig. 10 in all three modes and the tracking
paths clearly reflect the true path shown as the dashed line
in Fig. 9. Table VIII also tabulates quantified results of the
tracking. As can be seen, high step detection rate is achieved
with a minimum percentage of 98.44%. The travelled dis-
tance estimated also achieves an average of 98.43% accuracy,
confirming the precision of the step length model in practice.
The position errors for all three modes and the averaged
values are also visualized in Fig. 11. The average position
error remains below 0.6m in the initial path of a 45-meter
straight line and then rises when making turns and the max-
imum value remains below 2.5m during the whole tracking
period.

Moreover, multiple walking experiments in mixing all three
modes defined in MMTS are conducted with different subjects
to show the effectiveness of the proposed approach when the
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TABLE IX

TRACKING STATISTICS – MULTI-MODE

Fig. 11. Position error in single mode.

Fig. 12. Different positions of phone in pocket. (a) Subject 1. (b) Subject 2.
(c) Subject 3. (d) Subject 4. (e) Subject 5 jeans trousers. (f) Subject 5 casual
trousers.

mode of carrying the phone can be changed with unconstraint
placement. Trousers photos of different subjects are shown
in Fig. 12 including casual, jeans and sport ones, and the
smartphone inside the pocket is sketched by the red rectan-
gular. Fig. 12(e) and (f) are the same subject wearing different
trousers. The tracking paths as well as quantified results of the
walking are presented in Fig. 13 and Table IX.

Fig. 13 presents the path plotted while the subjects with
corresponding trousers as shown in Fig. 12(a)-(f). Each path,
(a)-(e), includes all three modes of the phone identified by

different colors of the path. Experiment (f) is conducted to test
its performance with different trousers of the same target so
it only consists of two modes, i.e., HOLDING and POCKET
mode. The result drawn by the application clearly outlines the
true path walked and the multi-colored path also proves the
accurate performance of the mode classification method.

Meanwhile, Table IX summarizes numerical results during
the tracking. The proposed MMTS achieves high accuracy
on detected steps and travelled distance, with an average
performance of 97.75% detected steps and 97.83% travelled
distance, respectively. For different subjects, the system is able
to track them properly with the proposed AOC scheme. For
results (a)-(e), the trained offset for SWING and POCKET
mode is presented. For the SWING mode, the compensated
offset varies slightly among subjects, within the absolute value
of 6°, as not much difference is observed in the motion
when a person walks with the phone swinging in hand. While
for POCKET mode, the offset differs a lot due to different
orientation of the phone inside a pocket. Without offset com-
pensation, the walking path would easily get diverged and lead
to significant position error. For result (e) and (f), the offsets
trained are also different for the same subject. It is observed
in the experiments that the compensated offset for POCKET
mode is relevant to the orientation of the phone inside the
pocket. Also, the proposed AOC scheme works well even
when the phone is put in the rear trousers pocket. The scheme
is able to compensate arbitrary offset after the orientation of
the phone changes as long as the pedestrian maintains the same
orientation during the offset training period.

Of all the paths of walking presented in both
Fig. 10 and Fig. 13. The source of position error mainly comes
from two factors. The first is the sensor drift in gyroscope,
results in the heading error of the path. Heading errors can
be easily observed in the latter part of all the paths. Referring
to Fig. 10, the sensor drift is more obvious in SWING mode.
The reason is that the phone rotates around its z-axis more
significantly together with the hand motion in SWING mode
and results in the accumulated error in yaw angle growing
faster. As yaw angle is used in determine the orientation of
walking, the error is then visible in the plotted path. The
sensor drift also influences the AOC scheme when the mode
of the smartphone changes. For instance in Fig. 13(a), the
sensor drift can be observed in the HOLDING mode before
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Fig. 13. Tracking of pedestrians results in multi-mode. (a) Subject 1. (b) Subject 2. (c) Subject 3. (d) Subject 4. (e) Subject 5 jeans trousers. (f) Subject 5
casual trousers.

transition into POCKET mode. After the transition is made,
the drift also affects the offset training period. Thus the error
still exists in the path afterwards. The other source of error
comes from undetected steps. As in the path before the last
turn in Fig. 11(c), the plotted track is shorter than the real
path due to undetected steps. In the MMTS, one undetected
step will influence itself as well as the step right after it.
On one hand, the step that is not detected will not have a
corresponding path in the walking track. On the other hand, it
will also lead to an error in the calculated step frequency for
the next step. The step frequency will be underestimated as
the time interval actually corresponds to two steps. Then, the
step length will also be underestimated. Of the two sources of
error, heading error is the dominant one as the position error
would grow quickly if an erroneous heading is estimated.

Considering the performance of the above presented results
of MMTS in single mode and multi-mode, Table X gives
comparisons with similar previous works developed with IMU
or smartphones. The result of [11] is the one obtained with
rotational method without any PCA processing, which is
similar in principle with MMTS. Some results are not available
in the referred works and are presented as NA. To give a fair
comparison among different works with varying total length
of the experiment track, the distance and average position
accuracy are reported in percentage with respect to the overall
tracking distance. Seen from the table, these two performances,
i.e., distance and position accuracy, of all works are compara-
ble, all achieving above 97% accuracy in distance estimation
and 98% in position accuracy. Regarding heading error, both
median and mean heading errors of MMTS are listed for
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TABLE X

PERFORMANCE COMPARISON

comparison since the results of [12] and [13] are mean heading
error. The proposed MMTS outperforms [11] significantly,
while the results are better in [12] and [13]. The accurate
heading in [12] and [13] is achieved by fusion of information
from multiple sensors, specifically, magnetometer and gyro-
scope in [12], GPS and magnetometer in [13] (the tracking
experiment is done outdoors). The heading performance is
marginally less than [12] and [13] since the heading in MMTS
is solely determined by gyroscope. The improvement with
respect to [11] is achieved due to the proposed AOC scheme,
compensating appropriate offset in direction for different sub-
jects, as well as enhanced accuracy of modern sensors. The
tracking result of MMTS can be viewed as raw sensor data
fusion with minimum processing requirements and a promis-
ing candidate for further enhancement. Moreover, MMTS
supports multiple modes of carrying the device. In [12], the
mobile phone is held in hand for the entire experiment,
[13] attaches the sensing device on the waist and [11] solely
investigates the case when the smartphone-shaped IMU is kept
in the pocket. The feature to support multiple modes is quite
important since the mobile phone will not be kept in the same
orientation throughout the tracking period in reality. MMTS
addresses this issue and provides users of the tracking system
with freedom in carrying the smartphone. This is supported
by the evidence shown in Table X. The results obtained in
single mode experiments are marginally better than that in
multi-mode ones and they both offer satisfying and comparable
tracking performance. Furthermore, MMTS delivers more reli-
able person-independent tracking performance assuming fewer
constrains regarding the placement of the device.

Another feature of MMTS is the light-weight processing
requirement, making real-time tracking feasible. It is the most
computationally efficient approach compared to the referred
works without using any PCA analysis [11], projection of
3-axis acceleration data from smartphone’s local reference
frame to a global reference frame [12] or Extended Kalman
Filter [13]. The maximum processing time of individual
iterations during each tracking experiment is shown in the
last row of Table VIII and Table IX. Since the sensor data
are sampled at 50Hz, the processing time window for one
iteration is 20ms. The proposed approach implemented on
the used phone achieves real-time tracking as the maximum
processing time is 14.7ms. Theoretically, the iteration with
maximum processing operations in MMTS is the one where
a valid step is detected in HOLDING mode and calibration
of the yaw data to solve 180° ambiguity is required. The
reason is that HOLDING mode has extra processing to calcu-

Fig. 14. Example processing time of individual iterations.

late the vertical acceleration for step detection according to
equation (5) and (6) when compared to SWING and
POCKET mode. This situation is covered in the path of
Fig. 10(a), Fig. 13(d) and (e) as walking towards point B in
HOLDING mode. The processing time of every iteration in
the experiment corresponds to path Fig. 13(d) is also present
in Fig. 14. The time also includes the time consumed in
graphics updating the path on the screen. As can be seen
from the figure, the maximum processing time does not appear
during the last part of the experiment as analyzed theoretically
above. It is observed from the processing time data for all the
experiments conducted that it is unpredictable when the worst
processing time appears since the phone is used normally
and all the processing is scheduled by the operating system.
However, the real-time processing of the MMTS is achieved
as the maximum processing time is within the 20ms time
window thanks to the light-weight processing characteristic
of the proposed approach.

Moreover, the proposed MMTS is a scalable system not
limited to indoor environment but also able to track pedestri-
ans outdoors. The approach described in [13] achieves best
heading accuracy by fusing GPS and magnetometer infor-
mation but is only able to offer such accuracy outdoors.
Kang and Han [12] also fuse magnetometer and gyroscope
sensing, but the heading accuracy is no better than that of [13]
as more unpredictable magnetic interference exists in indoor
environment. MMTS is able to offer comparable tracking per-
formance regardless of the environment as it solely dependent
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Fig. 15. Outdoor tracking path.

on the accelerometer and gyroscope within the smartphone.
Typically, indoor environment is more regular with corri-
dors, rooms separated by walls and perpendicular paths.
The pedestrian is guided by the path within the closed space.
While for outdoors, the path of a pedestrian will be more
diverse with irregular shape in the open space. A track-
ing experiment under MMTS is conducted outdoors in the
Albert Park, Auckland. As shown in Fig. 15, the white dash
line outlines the shape of the path, which is irregular with
curves when compared to indoors. The total length of the path
is 348m. The subject starts from point S with the direction
shown in the figure and returns to the same point with
458 steps. The duration of the walk is 4 minutes. The total step
count and distance travelled reported by MMTS is 447 steps
and 335m, with 97.6% and 96.3% accuracy respectively.
An accurate tracking is also seen from the plotted track. From
the result path, the maximum position error appears after the
circle-shaped path in POCKET mode. It is observed that in the
open space, people tend to behave differently when compared
to indoors regarding the direction of walking. In the initial
part of curve-shaped path in HOLDING and SWING mode,
the path is guided by the edge of the lawn. While for the circle-
shaped path, the references on both sides are a little further
away. Under this situation, the step orientation obtained from
the sensors may not reflect the walking direction of the person
as sideway movements exist. Therefore, the resulting path is
much smoother than the actual shape of the circle as sideway
displacement is not included.

The shapes of the paths used in the experiments are further
analyzed by comparing with existing works. Table XI sum-
marizes the shapes and features of the paths used in previous
works targeting pedestrian tracking. Square or rectangular

TABLE XI

SHAPE AND FEATURE OF PATHS USED IN LITERATURE

paths are commonly seen in experimental evaluation of such
systems and other irregular curved shapes such as J-shape,
U-shape, L-shape and athletic track are also used. In principle,
the paths contain several turns, up to 8 in [12] to verify the
localization accuracy. The length of the path is typically less
than 100m for indoors and can be up to 400m for outdoor
application. In this paper, two paths, a 96.33m rectangular
path with 4 turns and a 348m irregular curved path, are
used to evaluate the proposed MMTS. The rectangular path
with four turns used in indoor environment aims at testing
the performance of the proposed approach on straight path
with multiple turns while the irregular curved path outdoors
addresses the performance of the system on curved-shaped
path with continuous turns, both clockwise and anti-clockwise.
These two paths were selected to demonstrate the performance
of MMTS against existing approaches.

V. CONCLUSION AND FUTURE WORKS

This paper proposes a smartphone-based light-weight
approach, Multi-Mode PDR (MMPDR), for pedestrian track-
ing. The IMU in a standard smartphone is used as a walk
sensor. The approach also introduces a novel step length
model. It successfully identifies three typical modes of car-
rying the phone, calculates the step length and determines a
new position in every mode. The proposed step length model
is robust and accurate for people of different gender, height
and walking speed. Also, an Adaptive Offset Compensation
scheme introduced within the MMPDR Tracking System
achieves independence on the phone carrier. The tracking
performance of the proposed tracking system, developed on
the commercial off-the-shelf smartphone, results in the average
position accuracy of 98.91% in real-time.

Future work will be focused on extending the approach
to additional modes of carrying the phone and increasing
the accuracy and robustness of mode classification by fusing
other observation based techniques, map and physical layout
information.
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