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ABSTRACT
Poor connectivity is common when we use wireless networks
on the go. A natural way to tackle the problem is to take
advantage of the multiple network interfaces on our mobile
devices, and use all the networks around us. Using multiple
networks at a time makes makes possible faster connections,
seamless connectivity and potentially lower usage charges.
The goal of this paper is to explore how to make use of all
the networks with today’s technology. Specifically, we pro-
totyped a solution on an Android phone. Using our proto-
type, we demonstrate the benefits (and difficulties) of using
multiple networks at the same time.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General

General Terms
Design, Experimentation, Performance

Keywords
Mobile Internet, Open vSwitch, Android

1. INTRODUCTION
Poor connectivity is common when using wireless net-

works on the go. Connectivity comes and goes, through-
put varies, latencies can be extremely unpredictable, and
failures are frequent. Industry reports that demand is grow-
ing faster than wireless capacity, and the wireless crunch
will continue for some time to come [2, 10]. Yet users ex-
pect to run increasingly rich and demanding applications
on their smart-phones, such as video streaming, anywhere-
anytime access to their personal files, and online gaming;
all of which depend on connectivity to the cloud over un-
predictable wireless networks. Given the mismatch between
user expectations and wireless network characteristics, users
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will continue to be frustrated with application performance
on their mobile computing devices.

The problem is often attributed to a shortage of wireless
capacity or spectrum. This is not entirely true. Today, if
we stand in the middle of a city, we can likely “see” multiple
cellular and WiFi networks. But, frustratingly, this capacity
and infrastructure is not available to us. Our contracts with
cellular companies restrict access to other networks; most
private WiFi networks require authentication, and are effec-
tively inaccessible to us. Although we are often surrounded
by abundant wireless capacity, almost all is off-limits. This
is not good for us, and it is not good for network owners:
Their network might have lots of spare capacity, even though
a paying customer is close-by.

We believe users should be able to travel in a rich field of
wireless networks with access to all wireless infrastructure
around them, leading to a competitive market-place with
lower-cost connectivity and broader coverage. In the ex-
treme, if all barriers to fluidity can be removed, users could
connect to multiple networks at the same time, opening up
enormous capacity and coverage.

The good news is that smart-phones will be armed with
multiple radios capable of connecting to several networks
at the same time. Whereas today’s phones commonly have
four or five radios (e.g. 3G, 4G, WiFi, Bluetooth), in fu-
ture they will have more. Shrinking geometries and energy-
efficient circuit design will lead to mobile devices with more
radios/antennas; a mobile device will talk to multiple APs at
the same time for improved capacity, coverage and seamless
handover.

If a smart-phone can take advantage of multiple wireless
networks at the same time, then the user can experience:
Seamless connectivity: by using the best current net-
work, and allowing the client to choose which network to
connect to dynamically,

Faster connections: by stitching together flows over mul-
tiple networks,

Lower usage charges: by choosing to use the most cost-
effective network that meets the application needs,

Lower energy: by using the network with the current low-
est energy-usage per byte.

In our vision, intelligent and autonomous mobile devices
will hunt the vicinity to find the best radio networks, and
will choose which one(s) to connect to so as to best meet the
user’s needs. Key to our vision is the notion that control
rests with the client (the user and the smart-phone): The
network and the mobile client software will provide informa-
tion about the presence, performance and price of different
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networks; the client and the applications decide which one(s)
to use. Beyond barriers due to business reasons, there are
technical challenges.

Our vision requires much more than just multiple radios
and multiple networks—it requires that the mobile client
(as well as the applications and user) can take advantage of
them. Today’s clients are ill-equipped to do so, having grown
up in an era of TCP connections bound to a single physi-
cal network connection. This leads to several well-known
shortcomings: (1) An ongoing connection oriented flow—
like TCP—cannot easily be handed over to a new interface,
without re-establishing state; (2) If multiple network inter-
faces are available, an application cannot take advantage of
them to get higher throughput; at best it can use the fastest
connection available; (3) A user cannot easily and dynami-
cally choose interfaces at fine granularity so as to minimize
loss, delay, power consumption, or usage charges.

The three limitations are not just consequences of TCP.
They are manifestations of the way the network stack is
implemented in the operating system of the mobile device
today. Therefore, as a step towards our bigger vision, we
want to understand what changes are needed in the mo-
bile device networking stack, to overcome these three limi-
tations. In this paper, we describe how we refactored and
then modified the networking stack on Android and Linux
devices to be able to use multiple network interfaces simul-
taneously, and then we measure the performance of several
experiments where several network interfaces are used.

Our first prototype, reported here, is purely host-based.
The sending host decides which interfaces to use, and then
divides outgoing traffic over multiple interfaces. In some
cases we assume the receiver is also equipped with the same
networking stack, so it can reconstitute the original flow.
However, in this paper we assume the rest of the network
infrastructure is unchanged. We plan to explore the benefits
of coordination between the end host and the infrastructure
in future work.

2. SYSTEM DESCRIPTION
We will now describe how we modified the Android and

Linux operating system to allow a mobile device to use mul-
tiple interfaces. For our prototype, we had four high-level
requirements: (1) it should run on commercially available
smartphone devices and laptops, (2) it should work with
unmodified existing applications, (3) it should connect to
existing production WiFi and cellular networks, and (4)
wherever possible, it should reuse existing well-supported
software components.

2.1 Prototype
Our prototype consists of the following components shown

in Fig. 1:

2.1.1 Android/Linux
The first problem to solve is that, by default, Android only

allows one network interface to be active at a time—clearly
no good for us. Android chooses which interface to use ac-
cording to a preference order: If the device is connected to
a WiFi network, Android automatically disconnects from
WiMAX. We therefore modified the Connectivity Service in
Android to allow us to use multiple interfaces simultane-
ously.

Figure 1: System diagram illustrating the main fea-
tures of our prototype

Next, we need to spread traffic from one application over
multiple interfaces. The application sends traffic using one
IP source address; the networking stack takes care of spread-
ing the traffic over several interfaces, each with its own IP
address. We do this using a virtual Ethernet interface to
connect the application, with its local IP address, to a spe-
cial gateway inside the Linux kernel. The gateway stitches
multiple interfaces together, without the application know-
ing. Essentially, the gateway is a traffic load-balancer that
demultiplexes flows using Open vSwitch (see below), with
appropriate changes made to the routing table and ARP
tables. In this way, the application flow is decoupled from
the IP addresses on each interface, which allows the set of
interfaces to change dynamically as connectivity comes and
goes. We further illustrate this setup using our experiment
described in section 3.1.

Android is based on a minimal Linux kernel which is miss-
ing several tools and kernel modules we need (e.g. the kernel
module for virtual Ethernet interfaces). We added the mod-
ules and cross-compiled common utilities such as ifconfig,
route and ip.

2.1.2 Open vSwitch (OVS)
Open vSwitch (OVS) replaces the bridging code in Linux,1

and lets us dynamically change how each flow is routed.
OVS has an OpenFlow interface and therefore we can use
<match,action> flow-table entries to easily route, re-route
and handover existing connections.

We run OVS in kernel space, and ported it to Android
by patching and and cross-compiling its kernel module and
user-space control programs using Android Native Develop-
ment Kit (NDK) for the ARM or OMAP processors.2

2.1.3 Control Plane
We control how flows are routed and re-routed using a

small custom-built control plane, that interfaces to OVS us-
ing the OpenFlow protocol. In our prototype, the control
plane is on the mobile device; but in principle the control

1OVS was recently upstreamed to Linux kernel 3.3 [6].
2Our patches and instructions are publicly available
at https://docs.google.com/document/pub?id=1k5jAkz_
R475Ohj0OaJdWwSpAw6mmR2Mp_Ggr8_yrXsY.
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(a) Android smartphones. (b) Laptop with ten inter-
faces.

Figure 2: Devices running our prototype network
stack.

plane can be anywhere—for example, it could be run by the
network operator, or outsourced to a third party provider.

Our control plane runs as an Android background service,
and applications can interact with the control plane using
Android IPCs [1]. This control plane controls OVS using the
OpenFlow protocol running over a TCP socket. It controls
the network interfaces (and other local resources) through
system calls (e.g., Android Runtime Process). The control
plane can also communicate with control planes on other
hosts using JSON messages, allowing it to negotiate how
flows are spread across interfaces.

2.2 Hardware
Our prototype runs on four common mobile devices (three

smartphones running Android, and a laptop running Linux),
shown in Fig. 2:

Smartphone: Motorola Droid with TI OMAP processor
(600 MHz) and 256 MB of RAM, CDMA with Verizon 3G
data plan, running Android Gingerbread 2.3.3.

Smartphone: Nexus One with Qualcomm ARM proces-
sor (1 GHz) and 512 MB of RAM, GSM, HSDPA with T-
Mobile 3G data plan, running Android Gingerbread 2.3.3.

Smartphone: Nexus S 4G with Cortex ARM processor
(1 GHz) and 512 MB of RAM, CDMA, WiMAX with Sprint
3G/WiMAX data plan, running Android Gingerbread 2.3.5.3

Laptop: Dell with AMD Phenom II P920 quad-core
processor (3.2 GHz) and 4 GB memory, installed with Ubuntu
10.04.

Where possible, we run experiments on the mobile phones,
but sometimes it is infeasible (e.g. in one experiment we used
ten interfaces, which is too many for current smart phones).
Our experiments also communicate with peer servers and
middleboxes, for which we used servers running Ubuntu
11.04.

2.3 Overhead Benchmarks
Our prototype adds functionality to Android, and inevitably

consumes more power, more CPU cycles, and potentially re-
duces the maximum throughput. We designed the system
to have minimal overhead, which is confirmed by our first
set of experiments.

Throughput Reduction: We measured the goodput for ten
iperfs with and without OVS. To maximize the cost of the
overhead, we used the Motorola Droid, the least provisioned

3Android 2.3.5 includes an important fix to WiMAX driver.

(a) Throughput benchmark (b) RTT
benchmark

(c) System Load benchmark (d) Power
benchmark

Figure 3: Overhead of Switch Datapath

Android device we have. Fig. 3(a) shows that the goodput
is reduced by no more than 2%.

RTT Increase: Similarly, we profiled the delay incurred by
sending 300 pings with and without OVS. There is no ob-
servable increase (in Fig. 3(b)) in round trip time.

CPU Load: The CPU load is logged while running iperf on
the Droid with and without OVS. Fig. 3(c) shows that the
CPU load is increased by 1.8%.

Power Consumption: To measure our prototype’s impact on
power consumption, we removed the battery and powered
the Droid via its USB port and a power monitor. Fig. 3(d)
shows negligible power increase with OVS.

Several of the authors use the prototype daily, and it has
proved robust so far. Going forward, we intend to support
it for others to use, and enable others to build their research
prototypes on top.

3. EXPERIMENTS
The goal of our prototype is to overcome the three prob-

lems listed in the introduction, namely (1) an ongoing con-
nection cannot easily be handed over to a new interface with-
out re-establishing state; (2) if multiple network interfaces
are available, an application cannot take advantage of them
to get higher throughput (3) a user cannot easily choose
interfaces so as to minimize power consumption, or usage
charges.

To evaluate how well our prototype solves these prob-
lems, we ran the three experiments described below. Our
experiments assume we have no special control of the net-
work (we use existing WiFi and cellular networks), and the
clients communicate with unmodified peers (except other-
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Figure 4: Diagram showing the routes of the flow at
each stage of the experiment.

Figure 5: Diagram showing address translation hap-
pening along the routes of each flow at each stage of
the experiment.

wise noted). Hence our experiments also validate the degree
to which our prototype is backward compatible.

3.1 Seamless Connectivity
We begin with a simple testing to show how the sys-

tem maintains a HTTP connection across a migration. Our
model is a user arriving to work who wishes to migrate an
ongoing video stream from a public WiMAX network to a
corporate WiFi network.

In this experiment, both the client and peer are running
our prototype stack (i.e., with OVS and a custom control
plane). During the migration, the client’s IP address will
change. This change has to be coordinated with the peer
for a seamless migration through control packets between
the OpenFlow controllers. The control packet signals the im-
pending migration of an ongoing flow to the peer, which can
be done without aid from the network. The peer would then
rewrite the addresses of the subsequently incoming packets
such that the migration of the flow is transparent to the
application above.

Several possibilities exists in this design space. In our im-
plementation, we rewrote the source address to that of the
initially established flow (as shown Fig. 5). At any point in
time, the application in host A thinks that the communi-
cation is between addresses A’ and B while the application
in host B thinks that the communication is between ad-
dresses A1 and B’. The consistent views of the applications
in the end hosts is maintained by the translations indicated
in Fig. 5. Another possible implementation is to always
rewrite the source address to one that is arbitrarily picked
at the onset of the flow.

Fig. 6 shows the throughput of the session as we mi-
grate the flow (as shown in Fig. 4). Initially the flow is
routed through WiMAX; then after 30 seconds we migrate

Figure 6: Throughput of mobile during the experi-
ment.

Figure 7: Stitching two networks: Steady state
throughput.

it to WiFi. The control plane decides when to make the
move, and reconfigures OVS to change the addresses, rewrite
packet headers, and switch packets to/from the new inter-
face. This change is coordinated with the control plane of
the peer. The result is an uninterrupted TCP flow that
has been migrated from one network to another without re-
establishing state.

To show the flexibility of our system, we also tested a
very different migration mechanism, as described by Stoica
et al using I3 [18]. The flow is routed through an off-path
middlebox (or waypoint); each end communicates only with
the middlebox. This could be used, for example, to insert
a firewall or DPI box in a corporate environment. In our
experiment, the migration takes place at 50 seconds, with a
brief drop in data rate while packets reach the middlebox.

The experiment shows that our setup is quite powerful:
Both migrations were done without changing the network.
Usually, migration and mobility are considered fixed func-
tions of the infrastructure [16, 18].

3.2 Stitching Networks for Throughput
Our prototype allows multiple networks to be used simul-

taneously. To test how well this works, we streamed data
while varying the number of interfaces, and measured the
throughput seen by the application.

In the experiment, we download a 100 megabyte file using
five parallel TCP connections using aria2c. First, we ran all
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Figure 8: Stitching two networks: Throughput when
downloading a 100 MB file. WiFi is turned off from
20s to 40s, and WiMAX from 60s to 80s.

five TCP connections over our campus WiFi network; then
we used Clearwire’s WiMAX network. Finally, the control
plane stitched both networks together. We ran each test ten
times on two clients (the laptop, and on the Nexus S 4G
smartphone), and report the average throughput.

Fig. 7 shows the average aggregate throughput with and
without stitching. The laptop achieves 95% of the aggregate
data-rate, whereas the smartphone achieves 77%. Further
investigation revealed that there is interference between the
WiFi and WiMAX interface in the mobile phone, because
the transceivers are close together. There is no fundamen-
tal reason why this can not be solved by better shielding—
something we can expect if stitching becomes common.

Stitching interfaces together also helps maintain connec-
tivity during times of packet loss or complete network out-
age, as Fig. 8 shows. Each interface was turned off for 20s
during the experiment; connectivity was maintained because
of the other interface.

Finally, to push the limits of stitching, we stitch ten net-
working interfaces together (!). The ten networks are listed
in Fig. 9, and include four different wireless technologies:
3G, WiMAX, WiFi 802.11a (5 GHz), and WiFi 802.11g (2.4
GHz); and include six different production networks. We
had to use the laptop, because there was no way to attach
so many interfaces to a smartphone. To measure the capac-
ity brought by each successive interface, we gradually bring
up one interface at a time. The control plane stitches it
to the others to increase the data-rate. Fig. 9 shows the
throughput rising as each interface is added (in the same
order as Fig. 9), up to a maximum of 70 Mbps (more than
three times the fastest interface).

3.3 Dynamic Choice of Network
Our final experiment (inspired by [13]), shows how the

user or application can choose which network to use. In our
experiment, we use the phone’s accelerometer to tell if the
device is moving. When the user is moving, we connect it to
WiMAX for greater coverage; when stationary, we connect
it to the free and faster WiFi network (Fig. 10).

Figure 9: Connecting a laptop to ten wireless net-
works. The data-rate increases as more networks
are added (in the order listed in the figure). The
arrows show when each interface is turned on.

Figure 10: Moving an ongoing flow from WiMAX
to WiFi when device stops moving.

Because the decision is made by the user (or client), we can
expect faster innovations to be designed and made available
in the future, for example methods described in [8, 13, 14].

4. RELATED WORK
There is a large body of work that seeks to exploit the di-

versity of connectivity options in mobile wireless networks [4,
5, 12]. This work is also related to recent work on multi-
path transport protocols [9, 11, 15]. While MPTCP pro-
vides bandwidth aggregation, similar transport protocol op-
timizations such as TCP Migrate [17] provide the ability to
handover a TCP connection to a new physical path without
breaking the application. Our work is orthogonal to these
techniques, our goal is to provide an implementation that
can accommodate these (and other) extensions.

Our work is also related to a number of recent optimiza-
tions to improve wireless network performance, some of which
leverage sensors [13], others exploit geolocation informa-
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tion [8], while some leverage user-specified application poli-
cies [3]. Finally, recent work [7] has noted the prevalence
of multiple-SIM phones in countries such as India and pro-
posed modifications to the cellular network infrastructure
to enables clients to make better network choices. Similarly
techniques such as FatVap [12] aggregate bandwidth from
multiple neighboring APs to build a faster connection. Our
work compliments these techniques by providing flexibility
at the client to take advantage of these innovations.

5. DISCUSSION
Our prototype using Android and Open vSwitch, is able to

achieve the following: (1) handover an ongoing TCP connec-
tion without re-establishing state; (2) stitch multiple inter-
faces together for higher throughput; (3) dynamically choose
interfaces to minimize loss, delay, power consumption or us-
age charges. This demonstrates that a refactored client net-
work stack can achieve a lot of our goals without modifying
the fixed infrastructure.

However, current networks and devices do not make it
easy:

Address ambiguity : A client might have two interfaces
connected to different networks that use identical private
address spaces, for example they might both use addresses
starting from 192.168.0.0. While we can send packets via
gateways on both networks, to reach hosts directly attached
to either networks requires us to distinguish them by some
means other than IP address; e.g. by forwarding packets
based on the interface they are destined to (if we know).
Otherwise, one set of hosts will be unreachable.

Discovering connectivity : Discovery protocols (e.g. DNS
and DHCP) are typically tied to a particular network inter-
face, and therefore if we want to use multiple networks, we
must keep track of the DNS and DHCP settings for each in-
terface. And to find which networks are available, we must
proactively ARP hosts and routers on each interface.

Middleboxes : Wireless networks—particularly cellular networks—
are riddled with middleboxes, which can interfere with flow
migration. For example, a migrating flow might be blocked
if the new network did not see a SYN packet which we ob-
served during our experiments.

Interfaces : Sometimes, a single network requires different
header formats depending on the physical device. For ex-
ample, a 3G network requires Nexus One (using the Qual-
comm MSM 3G chipset) to present a virtual Ethernet inter-
face, whereas they are presented as IP interfaces on Google
Nexus S and the Sierra 3G USB Dongle. Different inter-
faces also present different MTU to the network stack, e.g.
3G and Ethernet interfaces typically has MTU of 1400 and
1500 bytes respectively.4 These are not limitations of the
approach, because it is possible to rewrite the header for-
mat arbitrarily for each interface and fragment the packet
accordingly.

To solve the problem of ambiguous private addresses will
take more work. Hopefully cellular providers will, in time,
fix the middlebox problem. The advantage of our refactored
client networking stack—where changes can easily be added
to OVS or to the control plane—it should be quite straight-
forward to add solutions to these, and as-yet unidentified
4We set the MTU to the minimum of all interfaces in our
prototype to work around this problem.

problems down the road. Indeed, we believe our approach
makes innovation and experimentation very straightforward
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