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Abstract—Physical activity has a positive impact on people’s
well-being, and it may also decrease the occurrence of chronic
diseases. Activity recognition with wearable sensors can provide
feedback to the user about his/her lifestyle regarding physical ac-
tivity and sports, and thus, promote a more active lifestyle. So far,
activity recognition has mostly been studied in supervised labora-
tory settings. The aim of this study was to examine how well the
daily activities and sports performed by the subjects in unsuper-
vised settings can be recognized compared to supervised settings.
The activities were recognized by using a hybrid classifier com-
bining a tree structure containing a priori knowledge and artificial
neural networks, and also by using three reference classifiers. Ac-
tivity data were collected for 68 h from 12 subjects, out of which
the activity was supervised for 21 h and unsupervised for 47 h.
Activities were recognized based on signal features from 3-D ac-
celerometers on hip and wrist and GPS information. The activities
included lying down, sitting and standing, walking, running, cy-
cling with an exercise bike, rowing with a rowing machine, playing
football, Nordic walking, and cycling with a regular bike. The to-
tal accuracy of the activity recognition using both supervised and
unsupervised data was 89% that was only 1% unit lower than the
accuracy of activity recognition using only supervised data. How-
ever, the accuracy decreased by 17% unit when only supervised
data were used for training and only unsupervised data for val-
idation, which emphasizes the need for out-of-laboratory data in
the development of activity-recognition systems. The results sup-
port a vision of recognizing a wider spectrum, and more complex
activities in real life settings.

Index Terms—Activity classification, context awareness, physi-
cal activity, wearable sensors.

I. INTRODUCTION

CHRONIC noncommunicable diseases (NCDs) cause 60%
of global deaths and the figure is expected to rise to 73%

by 2020 [1]. Such diseases include, for example, cardiovascular
diseases, diabetes, osteoporosis, and certain types of cancer.
Physical inactivity is a major risk factor for these deaths, and
it is estimated to cause 2 million unnecessary deaths per year.
There is, thus, an urgent need to promote more active lifestyle.

There is strong evidence that regular physical exercise de-
creases the risk of cardiovascular disease (e.g., [2]), which is
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the leading cause of death in many developed countries. Risk
factors associated with cardiovascular diseases include smok-
ing, obesity, and high blood pressure, the last two of which are
closely related to physical inactivity. Type II diabetes is strongly
associated with obesity that, in turn, has a well-known relation to
physical inactivity [3]. There is evidence that exercise improves
the physiological control of glucose metabolism [4]. Falls are
also a major health hazard to elderly people resulting often in hip
fracture requiring surgical operation and long rehabilitation. It
is suggested that muscle strength, neuromuscular coordination,
postural stability, steadiness of gait, and the structural properties
of bone all influence fall frequency [5]. Each of these can be
directly enhanced by physical training.

Estimating energy expenditure is a common way to assess the
activity level of a subject. Traditional devices for the estimation
of energy expenditure are not suited for unobtrusive ambulatory
monitoring. Recently, wearable devices have become available
for that purpose and studies have shown that accelerometer-
based estimation of energy expenditure can be obtained with
relatively good accuracy [6], [7]. However, energy expenditure
is only one important aspect of physical activity. An interna-
tional consensus statement regarding physical activity, fitness,
and health [8] identifies six areas affected by physiological ef-
fort: body shape, bone strength, muscular strength, skeletal flex-
ibility, motor fitness, and metabolic fitness. All of these have
their own distinct impact on an individual’s general well-being,
and thus, estimating energy expenditure alone is not sufficient
in order to assess the overall impact of the physical activities on
the individual’s well-being.

A more detailed analysis of physical effort can be obtained by
activity recognition, i.e., by detecting the exact form of activity
the subject is performing. Previous studies have applied activity
recognition, e.g., for elderly care [9]. We believe that another
important application domain for the activity recognition lies in
preventive healthcare (prevention of NCDs). In order to avoid
the vicious circle of illnesses and related reduced ability to
perform physical activities, the monitoring of the changes in
physical activity needs to start before the physical ability of an
individual starts to decline.

Accelerometers are currently among the most widely studied
wearable sensors for activity recognition, thanks to their accu-
racy in the detection of human body movements, small size,
and reasonable power consumption [10]. Recent reviews have
described the use of accelerometers in movement and activity
detection [10], [11]. In laboratory settings, the most prevalent
everyday activities (sitting, standing, walking, and lying) have
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been successfully recognized with accelerometers [12]–[18].
However, the applicability of these results to out-of-laboratory
monitoring is unclear. Long-term out-of-laboratory monitor-
ing often means less-controlled user-annotated data collection,
which introduces several challenges such as the following.

1) Annotations of the data are more unreliable causing diffi-
culty in classifier training and also degrading classification
results.

2) People perform activities in many different ways that are
hard to categorize. For example, a person may lie down
on a sofa in a way that cannot be said to be either sitting
or lying.

In a few studies, data have been collected outside the labo-
ratory. In [16], 24 subjects spent approximately 50 min outside
the laboratory. Accelerometers were placed on sternum, wrist,
thigh, and lower leg. Nine patterns (sitting, standing, lying, sit-
ting and talking, sitting and operating PC, walking, stairs up,
stairs down, and cycling) were recognized from presegmented
data using similarity measures with a total accuracy of 66.7%.
In the same study, the accuracy in laboratory settings was 95.8%
illustrating the difficulties introduced by out-of-laboratory set-
tings. In [19], five biaxial accelerometers attached to hip, wrist,
arm, ankle, and thigh were used to recognize 20 everyday activ-
ities such as walking, watching TV, brushing teeth, vacuuming,
etc. Data were collected for 82–160 min from 20 subjects. Four
different classifier structures were used of which decision tree
provided the best results accuracies ranging from 41% to 97%
for different activities.

In our previous study on activity recognition [20], 16 test
persons went through an approximately 2 h recording session
with a supervisor during which the following activities were
executed: lying, rowing (with a rowing machine), cycling (with
an exercise bike), sitting, standing, running, Nordic walking,
and walking. The recognition accuracies for different activities
varied for the best classifier between 58% and 97%.

In this study, new data were collected that also contained
unsupervised out-of-laboratory period. Our aim was to study
the effects of such environment to the classification accuracy.

II. METHODS

A. Data Collection

The devices used in the data collection and their locations
on the body are illustrated in Fig. 1. Although this figure in-
cludes sensors from which data are not used in this study, they
are shown in the figure for more complete picture of the data-
collection system.

Acceleration signals were measured with ADXL202 ac-
celerometers (Analog Devices, Norwood, MA), and were stored
on a flash-card-memory-based, 19-channel recorder (Embla
A10, Medcare, Reykjavik, Iceland). Sampling frequency was
20 Hz, and the range of the sensor output was ±10 g. Location
information was stored on a Garmin eTrex Venture GPS receiver
(Garmin Ltd., Olathe, KA) once per 20 s. Accelerometers were
attached to their data-storage unit by cables. Cables were taped
to the body so that they did not restrict normal movements.
Also, the cables were placed so that it was possible to place the

Fig. 1. Data collection and annotation system. The sensors and devices rele-
vant for this study are printed in bold.

TABLE I
TEST PROTOCOL FOR DATA COLLECTION

rucksack with the data-storage unit on the floor, for example,
when sitting down.

Twelve subjects [aged 27.1 ± 9.2 years, body mass index
(BMI) 23.8 ± 1.9, ten males, two females] were recruited by
advertisements at a local university. A written consent was ob-
tained from each volunteer. Approximately 6 h of data were
collected with each subject. The 6 h measurement session was
further divided into two phases: 1) a supervised period with ex-
act scenario and accurate supervisor-made annotations and 2)
an unsupervised period with subject-made annotations. The test
protocol is described in Table I.

During the supervised data-collection session, the subject
was accompanied by a supervisor, who used a personal digital
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Fig. 2. Annotation application on PDA.

assistant (PDA) and a custom-made application to mark changes
in activity and context for reference purposes (Fig. 2). After
the supervised phase, the use of the PDA application was in-
structed to the test person, and he/she made the annotations
himself/herself throughout the unsupervised period.

Exercise bike and rowing machine were each used for 5 min
indoors. The user was given the freedom to choose a comfortable
pace in each activity. Cycling was performed outdoors with real
bikes. Most test persons used their own bikes. Football was
played in a nearby park. In practice, this meant kicking a ball
with the supervisor and running after the ball every now and
then, not real football game with 22 players. Nordic walking
is an activity that has recently become popular in northern and
middle Europe. In short, it is fast-pace walking using poles
similar to skiing poles. It also enables the training of the upper
body during walking. During the unsupervised period, many
people went to work or attend lectures. Some people performed
different activities such as bowling, driving a car, walking to
different places like library, cottage, etc. One person went home
and took a nap.

Fig. 2 depicts the annotation application [21]. In each panel,
the options are exclusive. The context value was changed by
tapping another value. “Activity” panel was used to mark the
true activity of the subject. “Location” was used to tell whether
the subject was indoors, outdoors, or in a vehicle. “Eating” de-
scribed eating and drinking in general. “Annotator” is “assistant”
during the supervised activities and “self” during the unsuper-
vised period. “Sync” was used to mark the start and end markers
for synchronization. For some annotated context, there was also
an option for transition (“∗” in the application UI) such as the
transition from sitting to standing, which was used only by the
supervisor. It was not in use during the free period, as marking
the transitions from one activity to another was considered too
challenging to be done by the subject alone while performing
the activities.

B. Signal Processing

Signal features were calculated for each second of the data
collection. Time-domain features calculated were mean, vari-

Fig. 3. Selected signal features during different activities in excerpt from the
supervised data. Panels from top to bottom: 1) peak frequency of up-down ac-
celeration (feature A); 2) range of up-down acceleration (feature B); 3) spectral
entropy of up-down acceleration (feature F); 4) speed; 5) activity: A) cycling;
B) walking; C) playing football; D) Nordic walking; E) running.

ance, median, skew, kurtosis, 25% percentile, and 75% per-
centile. Frequency-domain features included the estimation of
power of the frequency peak and signal power in different fre-
quency bands. Speed was calculated from GPS location data.
Spectral entropy SN [22] of the acceleration signals for the
frequency band 0–10 Hz was calculated as

SN (f1 , f2) =
−

∑f2
fi =f1

P (fi) log(P (fi))
log(N [f1 , f2 ])

(1)

where P (fi) represents the power spectral density (PSD) value
of the frequency fi . The PSD values are normalized so that
their sum in the band [f1 , f2 ] is 1. N [f1 , f2 ] is the num-
ber of frequency components in the corresponding band in
PSD.

The feature selection proceeded by identifying for each activ-
ity the feature having the best performance in discriminating the
corresponding activity from other activities. The performance
of each feature was evaluated by the area under the receiver
operator characteristic (ROC) curve.

Figs. 3 and 4 show examples of how different signal features
behave during different activities. The following signal features
were selected for activity classification:

1) peak frequency of the up–down acceleration measured
from the hip;

2) range of the up–down acceleration measured from the hip;
3) mean value of the up–down acceleration measured from

the hip;
4) peak frequency of the horizontal acceleration measured

from the wrist;
5) sum of variances of 3-D acceleration measured from the

hip;
6) spectral entropy of the up–down acceleration measured

from the hip;
7) speed measured from the GPS.
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Fig. 4. Selected signal features during different activities in excerpt from
the unsupervised data. Panels from top to bottom: 1) peak frequency of up-
down acceleration (feature A); 2) range of up-down acceleration (feature B);
3) spectral entropy of up-down acceleration (feature F); 4) mean value of up-
down acceleration (feature C); 5) activity: A) sitting; B) walking; C) standing.
Also, shorter segments with corresponding shades of gray represent the same
activities.

The following nine target classes were used for the activity
recognition: 1) lying; 2) sitting and standing (see Section IV
for the reason why these activities were combined into a single
group); 3) walking; 4) running; 5) Nordic walking; 6) rowing
with a rowing machine; 7) cycling with an exercise bike; 8)
cycling with real bike; and 9) playing football. Compared to our
earlier study, two activities were novel: cycling with a real bike
and playing football. Although cycling with a regular bike and
with an exercise bike are very similar activities, we wanted to
keep them as separate classes because in everyday life they can
be performed with different purposes: exercise bike is used only
for exercising aerobic fitness, whereas regular bike is often used
for transportation. Football was included to test the feasibility of
the system to detect a more complex type of activity, as football
comprises walking, standing, running, kicking the ball, etc.

Four different classifiers were used: 1) custom decision tree;
2) automatically generated decision tree; 3) artificial neural net-
work (ANN); and 4) hybrid model. Classifiers 1–3 were included
mainly for comparison purposes to evaluate the performance
of the classifier 4. For all classifiers, results were acquired by
12-fold leave-one-subject-out cross validation. Each classifier
had the same seven-signal features at their disposal. Data sample
order was randomized before the training phase. The following
describes the classifier structures in detail.

1) Custom decision tree: In custom decision tree, each de-
cision is made by a simple thresholding mechanism [20].
The structure of the tree was built using a priori knowl-
edge and our own intuitive modeling of different activi-
ties. The obtained tree had eight binary decision nodes.
The structure of the tree is depicted in Fig. 5. Specific
questions can be assigned to each of the numbered de-
cision nodes: a) footsteps? b) lying? c) running? d) cy-
cling? e) playing football? f) doing indoor exercise? g)
Nordic walking? h) rowing? The tree has been built so that
“walk” and “sit/stand” are default groups for any activity

Fig. 5. Structure of the custom decision tree and hybrid model.

the decision tree is not familiar with. For example, if foot-
steps are detected, but not the characteristics of running
or Nordic walking, the activity falls through the tree to a
class “walk”. Similarly, if no footsteps are recognized and
also none of the characteristics of lying, cycling, cycling
on exercise bike, or rowing, the activity falls to “sit/stand”.

2) Automatically generated decision tree: An automatically
generated decision tree was used in order to compare how
well the human-made rules and tree structure perform
compared to automatic classification. The tree was gen-
erated using a Matlab (MathWorks, Inc., Natick, MA)
Statistics Toolbox function “treefit.”

3) Artificial neural network (ANN): A multilayer perceptron
with a hidden layer of 15 nodes and with resilient back
propagation as the training algorithm was used as the ANN
classifier.

4) Hybrid model: As a novel method, we combined the best
qualities of the custom decision tree model and neural
networks. Our observations suggested that though im-
plementing a priori knowledge into a classifier structure
improved the results in general, it also resulted in sim-
pler rules, which degraded the recognition accuracy in
some aspects. Thus, the purpose was to achieve a model
that could combine the best properties of the human
a priori knowledge of the activities with the accurate
nonlinear classification properties of the ANNs. In the
hybrid model, the simple thresholding decisions made in
each decision node of the custom decision tree (Fig. 5)
were replaced by small multilayer perceptron networks
(size 7:5:1). Each node gave as output a value between 0
and 1. A value of 0.5 was considered the decision bound-
ary when selecting which branch of the tree to proceed.

III. RESULTS

The total amount of data used for the analysis was 68:28:32
(hh:mm:ss), 21:08:57 of which were supervised data and
47:19:35 were unsupervised. The data consisted of the follow-
ing percentages of activities: 1) lying 7.3%; 2) rowing 1.5%;
3) cycling with an exercise bike 1.4%; 4) sitting and standing
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TABLE II
SUMMARY OF THE ACTIVITY-RECOGNITION RESULTS USING BOTH

SUPERVISED AND UNSUPERVISED DATA FOR TRAINING AND TESTING

OF THE CLASSIFIERS (PERCENTAGES)

TABLE III
DETAILED ACTIVITY-RECOGNITION RESULTS OF THE HYBRID MODEL USING

BOTH SUPERVISED AND UNSUPERVISED DATA FOR TRAINING AND TESTING

OF THE CLASSIFIER (PERCENTAGES)

TABLE IV
DETAILED ACTIVITY-RECOGNITION RESULTS OF THE HYBRID MODEL

USING ONLY SUPERVISED DATA FOR TRAINING AND TESTING

OF THE CLASSIFIER (PERCENTAGES)

63.2%; 5) running 1.9%; 6) Nordic walking 2.8%; 7) walking
16.8%; 8) football 1.5%; and 9) cycling with a regular bike
3.6%. The classification results are summarized in Table II. The
results of the hybrid model are described in Table III. To assess
the importance and reliability of supervised and unsupervised
data sets, the following results were also calculated.

1) The total classification accuracy was calculated using only
supervised data both in training and testing of the model
(leave-one-subject-out cross-validation). The test was per-
formed in order to obtain activity-recognition results that
are comparable to those of the earlier studies with lab-
oratory data. The total classification accuracy was 90%,
increasing by 1% unit compared to the result obtained
by using all collected data in training and validation. The
results are shown in Table IV.

TABLE V
DETAILED ACTIVITY-RECOGNITION RESULTS OF THE HYBRID MODEL USING

SUPERVISED DATA FOR TRAINING AND UNSUPERVISED DATA FOR TESTING

OF THE CLASSIFIER (PERCENTAGES)

2) The supervised data were used for the training, whereas the
unsupervised data were used for the testing of the model.
The test was performed in order to assess the feasibility of
a scenario in which an activity-recognition device would
be trained with laboratory data and be used in out-of-
laboratory settings. The total classification accuracy was
72% decreasing by 17% unit compared to the result ob-
tained by using all collected data in training and validation.
Only four activities were annotated by the subjects during
the free period: lying down, sitting and standing, walking,
and cycling. The results are shown in Table V.

IV. DISCUSSION

Activity data were collected for 68 h from 12 subjects, out
of which the activity was supervised for 21 h and unsupervised
for 47 h. Activities were recognized from the data by using
3-D accelerometers on hip and wrist and GPS information. The
total accuracy of the activity recognition using both supervised
and unsupervised data was 89%. In comparison to our previous
study in which only supervised data were used and the total
accuracy of 86% was achieved [20], the results obtained here
show slightly improved performance.

The aim of the study was to assess the feasibility of activity
recognition in out-of-laboratory settings. The 1% unit difference
between the classification accuracy obtained using all data and
that obtained using only supervised data suggest that activity
recognition is also feasible in out-of-laboratory. However, the
17% unit decrease in the classification accuracy when only su-
pervised data were used for training and only unsupervised for
validation suggests that in order to obtain an activity-recognition
algorithm feasible in out-of-laboratory settings, it must also be
trained with annotated real-life data.

The hybrid model classifier proved to provide better results
than the reference classifiers. It confirms our hypothesis that
combining human a priori knowledge and the nonlinear clas-
sification process of neural networks may provide a basis for
activity recognition with even greater variety of activities. How-
ever, with ANNs, an important issue is the noise and inaccuracy
in the everyday activity data. For that reason, special care should
be taken to obtain an adequate learning rate for the ANNs, as a
very big rate can prevent the convergence of the model. As the
hybrid model provided the best classification results, mainly its
results are discussed in the following.

Cycling with an exercise bike and regular bike introduced
difficulties in this study. In our earlier study, we had measured
acceleration from the wrist and chest. In that study, cycling with
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an exercise bike was detected with the accuracy of 75–82% [20].
In this study, an accelerometer placed on the hip could not pro-
duce a signal that could discriminate cycling and footsteps as
well. This can be observed, for example, in the result summary
in Table II. One can observe a clear tradeoff between the accu-
rate detection of the two cycling activities and the rest of the
activities. Automatically generated decision tree was the only
classifier that could recognize the two cycling activities with
nearly acceptable accuracy. However, this resulted in decrease
in the detection accuracies of the other activities as well as in
the total detection accuracy. Other classifiers concentrated on
the other activities, thus leading to a worse detection of the
cycling activities. The detection of cycling with a regular bike
outdoors has better accuracy, as the GPS signal provides addi-
tional information for this task.

Football playing was detected with 88% accuracy from the
supervised data that was a surprisingly high accuracy. How-
ever, it seems that the unsupervised period has included some
movements similar to football, which degraded the recognition
accuracy to 78% when all data were considered. Nevertheless,
we feel that the accuracy is encouraging for future research in
the recognition of more complex sports.

In supervised data, walking was detected with acceptable
accuracy of 81%. If Nordic walking and walking had been con-
sidered a single class, the recognition accuracy would have been
93%. Including the unsupervised period decreased the accuracy
with 10% unit for the hybrid model, which seems acceptable
because the exact annotation of walking in different day-to-day
situations is difficult as the walking periods may be of short
duration.

Lying was detected with 97% and sitting and standing were
recognized with 97% accuracy, as well. Seventy-eight percent of
the unsupervised data comprised lying, sitting, or standing. This
supports the assumption that the recognition of these passive ac-
tivities is of major importance, as everything else not belonging
to these activities can be considered more health enhancing.
Thus, as a simple index of subject’s overall activity, a percent-
age showing the amount of time spent in any other activity than
these three could be used. For that purpose, the recognition ac-
curacies obtained for these three activities in out-of-laboratory
settings are encouraging.

In our previous study, we had recognized that the absence
of accelerometers on the lower body (below waistline) was a
limitation in the sensor setup. This was especially noticed as the
inability to differentiate sitting and standing. For that reason, we
repositioned the 3-D accelerometer from the chest level to the
hip, as there were indications that such a placement could enable
the discrimination of these two activities [23]. However, it be-
came clear that, in our study, this discrimination was not possible
regardless of the accelerometer replacement. As the subjects in
our study wore sport clothes, the belt with the accelerometers
had to be placed on top of the clothes. For that reason, it was not
tightly connected to other clothes or the body, and the position
of the accelerometers did not stay fixed. It seems that in order
to obtain more precise acceleration information on hip, special
attention must be paid on the sensor location and attachment.
However, also such subject-dependent factors as body shape in-

fluence the sensor orientation on the waist. For that reason, the
accurate discrimination of sitting and standing using waist-level
accelerometry without user-specific training is complicated.

In the previous study, we used accelerometers with the sam-
pling frequency of 200 Hz. For the current study, we dropped the
sampling frequency to 20 Hz, which consumes less power. This
decision was also backed up by other studies [6], [24], suggest-
ing that such a sampling frequency should be enough. However,
this proved to be a wrong decision because the impulses pro-
duced, for example, by a foot hitting the ground during running
and a pole hitting the ground during Nordic walking diminished
notably, and as the signal features used for discriminating these
activities were based on the impulses, the activity-recognition
accuracy also decreased.

For this study, 2 g accelerometers were replaced by 10 g ones,
as we had noticed that the−2 to 2 g range is not sufficient during
vigorous exercise. In general, −10 to 10 g scale was enough for
the exercises on our protocol. Larger scale resulted in decreased
signal resolution, but it seems that the decrease had negligible
influence on the signal features.

Our future challenges include adjusting the activity-detection
algorithms to real-time performance and for mobile devices.
That way, the continuous monitoring of daily activities could be
performed unobtrusively, and the changes in the daily durations
of different activities could be reported that could motivate
the user to prevent chronic diseases associated with physical
inactivity.
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