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Dan Simon, Senior Member, IEEE

Abstract—Biogeography is the study of the geographical dis-
tribution of biological organisms. Mathematical equations that
govern the distribution of organisms were first discovered and
developed during the 1960s. The mindset of the engineer is that
we can learn from nature. This motivates the application of bio-
geography to optimization problems. Just as the mathematics of
biological genetics inspired the development of genetic algorithms
(GAs), and the mathematics of biological neurons inspired the
development of artificial neural networks, this paper considers the
mathematics of biogeography as the basis for the development of
a new field: biogeography-based optimization (BBO). We discuss
natural biogeography and its mathematics, and then discuss how
it can be used to solve optimization problems. We see that BBO
has features in common with other biology-based optimization
methods, such as GAs and particle swarm optimization (PSO).
This makes BBO applicable to many of the same types of problems
that GAs and PSO are used for, namely, high-dimension problems
with multiple local optima. However, BBO also has some features
that are unique among biology-based optimization methods. We
demonstrate the performance of BBO on a set of 14 standard
benchmarks and compare it with seven other biology-based opti-
mization algorithms. We also demonstrate BBO on a real-world
sensor selection problem for aircraft engine health estimation.

Index Terms—Biogeography, evolutionary algorithms, Kalman
filter, optimization, sensor selection.
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CPU Central processing unit.

DARE Discrete algebraic Riccati equation.

DE Differential evolution.

ES Evolutionary strategy.

GA Genetic algorithm.

HSI Habitat suitability index.

MAPSS Modular aero propulsion system simulation.

PBIL Probability-based incremental learning.

PSO Particle swarm optimization.

SGA Stud genetic algorithm.

SIV Suitability index variable.

SVD Singular value decomposition.

Manuscript received March 28, 2007; revised September 14, 2007. First pub-
lished March 18, 2008; current version published December 2, 2008.

The author is with the Department of Electrical Engineering, Cleveland State
University, Cleveland, OH 44115 USA (e-mail: d.j.simon@csuohio.edu).

Digital Object Identifier 10.1109/TEVC.2008.919004

I. INTRODUCTION

T HE SCIENCE OF biogeography can be traced to the
work of nineteenth century naturalists such as Alfred

Wallace [1] and Charles Darwin [2]. Until the 1960s, bio-
geography was mainly descriptive and historical. In the early
1960s, Robert MacArthur and Edward Wilson began working
together on mathematical models of biogeography, their work
culminating with the classic 1967 publication The Theory of
Island Biogeography [3]. Their interest was primarily focused
on the distribution of species among neighboring islands. They
were interested in mathematical models for the extinction and
migration of species. Since MacArthur and Wilson’s work,
biogeography has become a major area of research [4]. A
recent search of Biological Abstracts (a biology research index)
reveals that 25,452 papers were written in the year 2005 that
were related to the subject of biogeography. However, a search
of INSPEC, an engineering research index, reveals that no
biogeography papers have ever been written. In view of this,
part of the motivation of this paper is to merge the burgeoning
field of biogeography with engineering in order to see how the
two disciplines can be of mutual benefit. The application of
biogeography to engineering is similar to what has occurred
in the past few decades with genetic algorithms (GAs), neural
networks, fuzzy logic, particle swarm optimization (PSO), and
other areas of computer intelligence.

Mathematical models of biogeography describe how species
migrate from one island to another, how new species arise, and
how species become extinct. The term “island” here is used de-
scriptively rather than literally. That is, an island is any habitat
that is geographically isolated from other habitats. We there-
fore use the more generic term “habitat” in this paper (rather
than “island”) [4]. Geographical areas that are well suited as
residences for biological species are said to have a high habitat
suitability index (HSI) [5]. Features that correlate with HSI in-
clude such factors as rainfall, diversity of vegetation, diversity
of topographic features, land area, and temperature. The vari-
ables that characterize habitability are called suitability index
variables (SIVs). SIVs can be considered the independent vari-
ables of the habitat, and HSI can be considered the dependent
variable.

Habitats with a high HSI tend to have a large number of
species, while those with a low HSI have a small number of
species. Habitats with a high HSI have many species that em-
igrate to nearby habitats, simply by virtue of the large number
of species that they host. Habitats with a high HSI have a low
species immigration rate because they are already nearly satu-
rated with species. Therefore, high HSI habitats are more static
in their species distribution than low HSI habitats. By the same
token, high HSI habitats have a high emigration rate; the large
number of species on high HSI islands have many opportunities
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to emigrate to neighboring habitats. (This does not mean that an
emigrating species completely disappears from its home habitat;
only a few representatives emigrate, so an emigrating species
remains extant in its home habitat, while at the same time mi-
grating to a neighboring habitat.) Habitats with a low HSI have
a high species immigration rate because of their sparse popula-
tions. This immigration of new species to low HSI habitats may
raise the HSI of the habitat, because the suitability of a habitat
is proportional to its biological diversity. However if a habitat’s
HSI remains low, then the species that reside there will tend to
go extinct, which will further open the way for additional immi-
gration. Due to this, low HSI habitats are more dynamic in their
species distribution than high HSI habitats.

Biogeography is nature’s way of distributing species, and is
analogous to general problem solutions. Suppose that we are
presented with a problem and some candidate solutions. The
problem can be in any area of life (engineering, economics,
medicine, business, urban planning, sports, etc.), as long as we
have a quantifiable measure of the suitability of a given solution.
A good solution is analogous to an island with a high HSI, and a
poor solution represents an island with a low HSI. High HSI so-
lutions resist change more than low HSI solutions. By the same
token, high HSI solutions tend to share their features with low
HSI solutions. (This does not mean that the features disappear
from the high HSI solution; the shared features remain in the
high HSI solutions, while at the same time appearing as new fea-
tures in the low HSI solutions. This is similar to representatives
of a species migrating to a habitat, while other representatives
remain in their original habitat.) Poor solutions accept a lot of
new features from good solutions. This addition of new features
to low HSI solutions may raise the quality of those solutions. We
call this new approach to problem solving biogeography-based
optimization (BBO).

BBO has certain features in common with other biology-
based algorithms. Like GAs and PSO, BBO has a way of sharing
information between solutions. GA solutions “die” at the end
of each generation, while PSO and BBO solutions survive for-
ever (although their characteristics change as the optimization
process progresses). PSO solutions are more likely to clump to-
gether in similar groups, while GA and BBO solutions do not
necessarily have any built-in tendency to cluster.

The goals of this paper are threefold. First, we want to give
a general presentation of the new optimization method called
BBO. We do this by first studying natural biogeography, and
then generalizing it to obtain a general-purpose optimization
algorithm. Second, we want to compare and contrast BBO
with other population-based optimization methods. We do
this by looking at the commonalities and differences from
an algorithmic point-of-view, and also by comparing their
performances on a set of benchmark functions. Third we want
to apply BBO to the real-world problem of sensor selection
for aircraft engine health estimation. This will demonstrate the
applicability of BBO to real-world problems.

Section II reviews the ideas and mathematics of biogeog-
raphy, and Section III discusses how biogeography can be used
to formulate a general optimization algorithm. Section IV re-
views aircraft engine health estimation and how Kalman fil-
tering can be used to estimate engine health. Section V provides

Fig. 1. Species model of a single habitat based on [3].

some simulation results comparing BBO with other optimiza-
tion methods, both for general benchmark functions and for a
sensor selection problem. Section VI presents some concluding
remarks and suggestions for further work.

II. BIOGEOGRAPHY

Fig. 1 illustrates a model of species abundance in a single
habitat [3]. The immigration rate and the emigration rate
are functions of the number of species in the habitat.

Consider the immigration curve. The maximum possible im-
migration rate to the habitat is , which occurs when there are
zero species in the habitat. As the number of species increases,
the habitat becomes more crowded, fewer species are able to
successfully survive immigration to the habitat, and the immi-
gration rate decreases. The largest possible number of species
that the habitat can support is , at which point the immi-
gration rate becomes zero.

Now consider the emigration curve. If there are no species in
the habitat then the emigration rate must be zero. As the number
of species increases, the habitat becomes more crowded, more
species are able to leave the habitat to explore other possible res-
idences, and the emigration rate increases. The maximum em-
igration rate is , which occurs when the habitat contains the
largest number of species that it can support.

The equilibrium number of species is , at which point the
immigration and emigration rates are equal. However, there may
be occasional excursions from due to temporal effects. Pos-
itive excursions could be due to a sudden spurt of immigra-
tion (caused, perhaps, by an unusually large piece of flotsam
arriving from a neighboring habitat), or a sudden burst of spe-
ciation (like a miniature Cambrian explosion). Negative excur-
sions from could be due to disease, the introduction of an
especially ravenous predator, or some other natural catastrophe.
It can take a long time in nature for species counts to reach equi-
librium after a major perturbation [4], [6].

We have shown the immigration and emigration curves in
Fig. 1 as straight lines but, in general, they might be more com-
plicated curves. Nevertheless, this simple model gives us a gen-
eral description of the process of immigration and emigration.
The details can be adjusted if needed.
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Now, consider the probability that the habitat contains ex-
actly species. changes from time to time as
follows:

(1)

where and are the immigration and emigration rates when
there are species in the habitat. This equation holds because
in order to have species at time , one of the following
conditions must hold:

1) there were species at time , and no immigration or em-
igration occurred between and ;

2) there were species at time , and one species im-
migrated;

3) there were species at time , and one species emi-
grated.

We assume that is small enough so that the probability
of more than one immigration or emigration can be ignored.
Taking the limit of (1) as gives equation (2) shown
at the bottom of the page. We define , and

, for notational simplicity. Now, we can ar-
range the equations (for ) into the single matrix
equation

(3)

where the matrix is given as (4) shown at the bottom of the
page. For the straight line curves shown in Fig. 1, we have

(5)

Now, consider the special case . In this case, we have

(6)

and the matrix becomes

. . .
...

...
. . .

. . .
. . .

...
...

. . .

(7)

where is defined by the above equation.
1) Observation 1: Zero is an eigenvalue of , with the cor-

responding eigenvector

(8)

where is the smallest integer that is greater than or equal to
; that is, .

This observation can be verified by a straightforward but
somewhat tedious solution of the eigenvalue equation
for the unknown scalar and the unknown vector . As an
example, with , we obtain

(9)

With , we obtain

(10)

2) Conjecture 1: The eigenvalues of are given as

(11)

This conjecture has not yet been proven, but it has been ob-
served to be true for all values of that have been investigated
up to this point in time.

(2)

. . .
...

...
. . .

. . .
. . .

...
...

. . .

(4)
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Fig. 2. Illustration of two candidate solutions to some problem. � is a rela-
tively poor solution, while � is a relatively good solution.

Theorem 1: The steady-state value for the probability of the
number of each species is given by

(12)

where and are given in (8).
Proof: See the appendix.

III. BIOGEOGRAPHY-BASED OPTIMIZATION (BBO)

In this section, we discuss how the biogeography theory of the
previous section can be applied to optimization problems with
a discrete domain.

A. Migration

Suppose that we have a problem and a population of can-
didate solutions that can be represented as vectors of integers.
Each integer in the solution vector is considered to be an SIV.
Further suppose that we have some way of assessing the good-
ness of the solutions. Those solutions that are good are con-
sidered to be habitats with a high HSI, and those that are poor
are considered to be habitats with a low HSI. HSI is analogous
to “fitness” in other population-based optimization algorithms
(GAs, for example). High HSI solutions represent habitats with
many species, and low HSI solutions represent habitats with few
species. We assume that each solution (habitat) has an identical
species curve (with for simplicity), but the value repre-
sented by the solution depends on its HSI. in Fig. 2 represents
a low HSI solution, while represents a high HSI solution.
in Fig. 2 represents a habitat with only a few species, while
represents a habitat with many species. The immigration rate
for will, therefore, be higher than the immigration rate for

. The emigration rate for will be lower than the emi-
gration rate for .

We use the emigration and immigration rates of each solution
to probabilistically share information between habitats. With

probability , we modify each solution based on other solu-
tions. If a given solution is selected to be modified, then we use
its immigration rate to probabilistically decide whether or not
to modify each suitability index variable (SIV) in that solution.
If a given SIV in a given solution is selected to be modi-
fied, then we use the emigration rates of the other solutions to
probabilistically decide which of the solutions should migrate a
randomly selected SIV to solution .

The BBO migration strategy is similar to the global recombi-
nation approach of the breeder GA [7] and evolutionary strate-
gies [8] in which many parents can contribute to a single off-
spring, but it differs in at least one important aspect. In evolu-
tionary strategies, global recombination is used to create new
solutions, while BBO migration is used to change existing solu-
tions. Global recombination in evolutionary strategy is a repro-
ductive process, while migration in BBO is an adaptive process;
it is used to modify existing islands.

As with other population-based optimization algorithms, we
typically incorporate some sort of elitism in order to retain the
best solutions in the population. This prevents the best solutions
from being corrupted by immigration.

B. Mutation

Cataclysmic events can drastically change the HSI of a nat-
ural habitat. They can also cause a species count to differ from
its equilibrium value (unusually large flotsam arriving from
a neighboring habitat, disease, natural catastrophes, etc.). A
habitat’s HSI can, therefore, change suddenly due to apparently
random events. We model this in BBO as SIV mutation, and
we use species count probabilities to determine mutation rates.

The probabilities of each species count will be governed by
the differential equation given in (2). By looking at the equilib-
rium point on the species curve of Fig. 2, we see that low species
counts and high species counts both have relatively low prob-
abilities. This can also be inferred from Theorem 1. Medium
species counts have high probabilities because they are near the
equilibrium point.

As an example, consider the case where . Then,
the steady-state solution of (2) is independent of the initial con-
dition and can be computed either numerically or from
Theorem 1 as shown in (13) at the bottom of the page. The el-
ements of sum to one (within rounding error), and a plot
of the elements is an even function with respect to its
midpoint.

Each population member has an associated probability, which
indicates the likelihood that it was expected a priori to exist as
a solution to the given problem. Very high HSI solutions and
very low HSI solutions are equally improbable. Medium HSI
solutions are relatively probable. If a given solution has a low
probability , then it is surprising that it exists as a solution. It
is, therefore, likely to mutate to some other solution. Conversely,
a solution with a high probability is less likely to mutate to a

(13)
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different solution. This can be implemented as a mutation rate
that is inversely proportional to the solution probability

(14)

where is a user-defined parameter. This mutation scheme
tends to increase diversity among the population. Without this
modification, the highly probable solutions will tend to be more
dominant in the population. This mutation approach makes low
HSI solutions likely to mutate, which gives them a chance of
improving. It also makes high HSI solutions likely to mutate,
which gives them a chance of improving even more than they
already have. Note that we use an elitism approach to save the
features of the habitat that has the best solution in the BBO
process, so even if mutation ruins its HSI, we have saved it and
can revert back to it if needed. So, we use mutation (a high
risk process) on both poor solutions and good solutions. Those
solutions that are average are hopefully improving already, and
so we avoid mutating them (although there is still some mutation
probability, except for the most probable solution).

The implemented mutation mechanism is problem depen-
dent, just as it is for GAs. In our sensor selection problem
(discussed in Section IV), if a solution is selected for mutation,
then we simply replace a randomly chosen sensor in the solution
with a new, randomly generated sensor. We have not explored
alternative mutation schemes in this paper, but presumably all
of the mutation schemes that have been implemented for GAs
could also be implemented for BBO.

C. BBO Definitions and Algorithm

In this section, we provide some definitions as a first step
towards formalizing the BBO algorithm. We also provide an
outline of the algorithm. We use to refer to the set of real
numbers, to refer to the set of integers, and to refer to the
empty set.

Definition 1: A habitat is a vector of integers
that represents a feasible solution to some problem.

Definition 2: A suitability index variable is an
integer that is allowed in a habitat. is the set of all
integers that are allowed in a habitat.

The requirement that is called a constraint. At a
higher level, the requirement that is also called a
constraint.

Definition 3: A habitat suitability index HSI: is a
measure of the goodness of the solution that is represented by
the habitat.

Note: In most population-based optimization algorithms, HSI
is called fitness.

Definition 4: An ecosystem is a group of habitats.
The size of an ecosystem is constant. Future work could

allow variable-sized ecosystems, just as some flavors of GAs
allow for variable population sizes.

Definition 5: Immigration rate is a mono-
tonically nonincreasing function of HSI. is proportional to
the likelihood that SIVs from neighboring habitats will migrate
into habitat .

Definition 6: Emigration rate is a mono-
tonically nondecreasing function of HSI. is proportional to

the likelihood that SIVs from habitat will migrate into neigh-
boring habitats.

In practice, we assume that and are linear with the same
maximum values. However, these assumptions are made only
for mathematical convenience, and better performance might be
attainable if these assumptions are relaxed.

Definition 7: Habitat modification
is a probabilistic operator that adjusts habitat based on the
ecosystem . The probability that is modified is propor-
tional to its immigration rate , and the probability that the
source of the modification comes from is proportional to the
emigration rate .

Habitat modification can loosely be described as follows.

Select with probability

If is selected

For to

Select with probability

If is selected

Randomly select an SIV from

Replace a random SIV in with

end

end

end

From this algorithm, we note that elitism can be implemented
by setting for the best habitats, where is a user-
selected elitism parameter. Also note that the definition of
ensures that the modified habitat satisfies the SIV constraints.

Definition 8: Mutation is a proba-
bilistic operator that randomly modifies habitat SIVs based on
the habitat’s a priori probability of existence.

A habitat’s probability of existence is computed from and
as discussed in Section II. Mutation can be described as follows.

For to

Use and to compute the probability

Select SIV with probability

If is selected

Replace with a randomly generated SIV

end

end

As with habitat modification, elitism can be implemented by
setting the probability of mutation selection to zero for the

best habitats. From the above definition, we see that mutation
must be constrained to result in an HSI that satisfies the SIV
constraints.

Definition 9: An ecosystem transition function
is a 6-tuple that modifies the

ecosystem from one optimization iteration to the next.
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An ecosystem transition function can be written as follows:

(15)

In other words, the ecosystem transition function begins by
computing the immigration and emigration rates of each habitat.
Then, habitat modification is performed on each habitat, fol-
lowed by an HSI recalculation. Finally, mutation is performed,
followed again by an HSI recalculation for each habitat.

Definition 10: A BBO algorithm is a
3-tuple that proposes a solution to an optimization problem.

is a function that creates an initial
ecosystem of habitats and computes each corresponding HSI.

is the ecosystem transition function defined earlier, and
is a termination criterion.

could be implemented with random number generators,
heuristic solutions to the optimization problem, or some other
problem-dependent procedure. could depend on the number
of iterations, or the HSI of the best habitat, or some other
problem-dependent criterion. A BBO algorithm can be de-
scribed as follows.

while not

end

The BBO algorithm can be informally described with the fol-
lowing algorithm.

1) Initialize the BBO parameters. This means deriving
a method of mapping problem solutions to SIVs and
habitats (see Definitions 1 and 2), which is problem
dependent. We also initialize the maximum species
count and the maximum migration rates and

(see Fig. 2), the maximum mutation rate [see
(14)], and an elitism parameter (see the last paragraph
of Section III-A). Note that the maximum species count
and the maximum migration rates are relative quantities.
That is, if they all change by the same percentage, then
the behavior of BBO will not change. This is because if

, , and change, then the migration rates , ,
and the species count will change by the same relative
amount for each solution.

2) Initialize a random set of habitats, each habitat
corresponding to a potential solution to the given problem.
This is the implementation of the operator described
in Definition 10.

3) For each habitat, map the HSI to the number of species
, the immigration rate , and the emigration rate (see

Fig. 2 and Definitions 5 and 6 ).
4) Probabilistically use immigration and emigration

to modify each non-elite habitat as discussed in
Section III-A, then recompute each HSI (see Definition 7).

5) For each habitat, update the probability of its species
count using (2). Then, mutate each non-elite habitat
based on its probability as discussed in Section III-B, and
recompute each HSI (see Definition 8).

6) Go to step (3) for the next iteration. This loop can be
terminated after a predefined number of generations, or
after an acceptable problem solution has been found.
This is the implementation of the operator described
in Definition 10.

Note that after each habitat is modified (steps 2, 4, and 5), its
feasibility as a problem solution should be verified. If it does
not represent a feasible solution, then some method needs to be
implemented in order to map it to the set of feasible solutions.

D. Differences Between BBO and Other Population-Based
Optimization Algorithms

In this section, we point out some of the distinctives of BBO.
First, we note that although BBO is a population-based opti-
mization algorithm it does not involve reproduction or the gen-
eration of “children.” This clearly distinguishes it from repro-
ductive strategies such as GAs and evolutionary strategies.

BBO also clearly differs from ACO, because ACO generates
a new set of solutions with each iteration. BBO, on the other
hand, maintains its set of solutions from one iteration to the next,
relying on migration to probabilistically adapt those solutions.

BBO has the most in common with strategies such as PSO and
DE. In those approaches, solutions are maintained from one iter-
ation to the next, but each solution is able to learn from its neigh-
bors and adapt itself as the algorithm progresses. PSO represents
each solution as a point in space, and represents the change over
time of each solution as a velocity vector. However, PSO so-
lutions do not change directly; it is rather their velocities that
chane, and this indirectly results in position (solution) changes.
DE changes its solutions directly, but changes in a particular DE
solution are based on differences between other DE solutions.
Also, DE is not biologically motivated. BBO can be contrasted
with PSO and DE in that BBO solutions are changed directly
via migration from other solutions (islands). That is, BBO solu-
tions directly share their attributes (SIVs) with other solutions.

It is these differences between BBO and other popula-
tion-based optimization methods that may prove to be its
strength. Some open research questions are: How do these
differences make the performance of BBO differ from other
population-based optimization methods? What do these differ-
ences say about the types of problems that are most appropriate
for BBO? This paper presents the initial explorations into BBO
but leaves these questions for later work.

IV. AIRCRAFT ENGINE HEALTH ESTIMATION

In this section, we review the sensor selection problem for
aircraft engine health estimation, which we will later use as a
test problem for the BBO theory.

Fig. 3 shows a schematic of an aircraft turbofan engine [9].
An inlet supplies air to the fan. The air that leaves the fan sep-
arates into two streams, one through the engine core, and the
other through the bypass duct. The fan is driven by a low-pres-
sure turbine. The air that passes through the engine core goes
through a compressor, which is driven by a high-pressure tur-
bine. Fuel is injected and ignited in the combustor to produce
hot gas that drives the turbines. The two air streams recombine
in the augmentor duct, where additional fuel may be added to
increase the temperature. The air leaves the augmentor at a high
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Fig. 3. Schematic of an aircraft turbofan engine.

velocity through the nozzle (which has an adjustable cross sec-
tion area) and thereby produces thrust.

The engine simulation used in this paper is called Modular
Aero Propulsion System Simulation (MAPSS) [9], and was
written using Matlab Simulink. The controller update rate is 50
Hz. The three state variables used in MAPSS are low-pressure
rotor speed, high-pressure rotor speed, and average hot section
metal temperature.

The discretized time invariant equations that model the tur-
bofan engine can be summarized as

(16)

where is the time index, is the three-element state vector,
is the three-element control vector, is the ten-element health
parameter vector, and is the measurement vector. The mea-
surement consists of the outputs of the sensors with which we
instrument the engine. The health parameters change slowly
over time. Between measurement times their deviations can be
approximated by the zero mean noise . The noise term

represents inaccuracies in the system model, and
represents measurement noise. The states, controls, health pa-
rameters, and measurements are summarized in [10], along with
their values.

A Kalman filter can be used with (16) to estimate the state
vector and the health parameter vector . One of the nice fea-
tures of the Kalman filter is that it not only provides an estimate
of and , but it also provides a measure of the uncertainty of
the estimate. The uncertainty of the estimate is provided by the
error covariance , which is computed as part of the Kalman
filter recursion [11].

Since we have three states and ten health parameters, the co-
variance is a 13 13 matrix. The diagonal elements give the

variance of the estimation errors of the states and health param-
eters. The first three diagonal elements give the variance of the
state estimation errors, and the last ten diagonal elements give
the variance of the health parameter estimation errors. In the
problem we consider in this paper, we are interested only in the
health parameter estimation errors, so we are concerned about
the diagonal elements .

We can choose which sensors to use for the health estima-
tion process. We can also duplicate sensors if we want. We have
11 unique sensors as described in [10], but we can use multiple
sensors at a single location if desired. For example, we could
use two or three identical sensors to measure the fan exit pres-
sure, thereby effectively reducing our signal-to-noise ratio for
that measurement, or we could completely eliminate one of the
sensors to achieve a financial savings. The use of more sensors
results in smaller elements , which means that our health es-
timate will be better. However, there is a point of diminishing
returns. The use of more sensors costs more money, and it may
not be worth the extra cost to obtain a marginally improved
health estimate. The optimality criterion for the health estima-
tion problem can, therefore, be written

(17)

and are reference values used for normalization. is
the covariance that results if we use all 11 sensors with no du-
plicates, and is the financial cost of fitting the aircraft engine
with all 11 sensors. is a scale factor that weights the impor-
tance of financial cost relative to estimation accuracy. is the
objective function for the health estimation problem. This ap-
proach to sensor selection was first proposed using GAs [12].
When BBO is used to solve the problem, is referred to as the
HSI.

The choice of what sensors to use to minimize is an op-
timization problem. Recall that we have 11 sensors available.
We typically have some constraints on the problem, such as the
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constraint that we are to use a total of sensors, with each in-
dividual sensor used no more than times. If and

, then we have the following examples:

In general, we want to use a total of sensors out of unique
sensors (in our example, ) with each sensor being used
no more than times. (The numerical values of , , and
will be problem dependent.) The total number of possible sensor
sets is found by the following procedure. First, we generate a
polynomial as

(18)

The total number of sets containing exactly sensors is equal
to . This is known as the multinomial theorem [13].

As a simple example, suppose that we want to use a total of
four sensors out of three unique sensors (sensor numbers 1, 2,
and 3) with each sensor being used no more than two times. The
possible sensor sets are shown in (19) at the bottom of the page.
We see that there are six possible sensor sets. The polynomial

associated with this problem is

(20)

The coefficient of in is equal to 6; that is, there are six
unique sensor sets that use a total of four sensors.

V. SIMULATION RESULTS

In this section, we look at the performance of BBO as
compared with other population-based optimization methods.
First, we compare performances for a set of commonly
used benchmark functions, and then we compare perfor-
mances for the turbofan sensor selection problem. The
code that was used to generate the results is available at

.

A. Benchmark Results

In order to explore the benefits of BBO, we compared its
performance on various benchmark functions with seven other
population-based optimization methods. ACO [14]–[17] is an
algorithm that is based on the pheromone deposition of ants.
DE [17]–[19] is a simple method that uses the difference be-
tween two solutions to probabilistically adapt a third solution.

An ES [8], [20]–[22] is an algorithm that generally gives about
equal importance to recombination and mutation, and that al-
lows more than two parents to contribute to an offspring. A GA
[8], [20], [23] is a method that is based on natural selection in the
theory of biological evolution. PBIL [24], [25] is a type of GA
that maintains statistics about the population rather than main-
taining the population directly. PSO [17], [26]–[28] is based on
the swarming behavior of birds, fish, and other creatures. A stud
genetic algorithm (SGA) [29] is a GA that uses the best indi-
vidual at each generation for crossover.

The benchmarks that we minimized are functions that are
representative of those used in the literature for comparison of
optimization methods. Some are multimodal, which means that
they have multiple local minima. Some are nonseparable, which
means that they cannot be written as a sum of functions of indi-
vidual variables. Some are regular, which means they are ana-
lytical (differentiable) at each point of their domain. Each of the
functions in this study has 20 independent variables. The func-
tions are summarized in Table I. More information about these
functions, including their domains, can be found in [8], [30],
and [31].

The benchmarks were compared by implementing integer
versions of all the optimization algorithms in Matlab. The gran-
ularity or precision of each benchmark function was 0.1, except
for the quartic function. Since the domain of each dimension of
the quartic function was only , it was implemented with
a granularity of 0.01.

We did some rough tuning on each of the optimization algo-
rithms to get reasonable performance, but we did not make any
special efforts to fine-tune the algorithms. For ACO, we used
the following parameters: initial pheromone value ,
pheromone update constant , exploration constant

, global pheromone decay rate , local pheromone
decay rate , pheromone sensitivity , and visibility
sensitivity . For BBO, we used the following parameters:
habitat modification probability , immigration probability
bounds per gene = , step size for numerical integration of
probabilities , maximum immigration and migration rates
for each island , and mutation probability . (For BBO
mutation is beneficial primarily for small population sizes.) For
DE, we used a weighting factor and a crossover con-
stant . For the ES, we produced offspring
each generation, and standard deviation for changing
solutions. For the GA, we used roulette wheel selection, single
point crossover with a crossover probability of 1, and a mutation
probability of 0.01. For PBIL, we used a learning rate of 0.05,
1 good population member and 0 bad population members to
use to update the probability vector each generation, an elitism
parameter of 1, and a 0 probability vector mutation rate. For
PSO, we used only global learning (no local neighborhoods),
an inertial constant , a cognitive constant , and a so-
cial constant for swarm interaction . For the SGA, we used

(19)
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TABLE I
BENCHMARK FUNCTIONS. THE GRANULARITY OF EACH DOMAIN WAS 0.1 EXCEPT

FOR THE QUARTIC FUNCTION, WHICH HAD A GRANULARITY OF 0.01

TABLE II
MEAN NORMALIZED OPTIMIZATION RESULTS AND CPU TIMES ON BENCHMARK FUNCTIONS. THE

NUMBERS SHOWN ARE THE MINIMUM FUNCTION VALUES FOUND BY THE ALGORITHMS,
AVERAGED OVER 100 MONTE CARLO SIMULATIONS, AND NORMALIZED SO THAT THE

SMALLEST NUMBER IN EACH ROW IS 100. NOTE THAT THESE ARE NOT THE ABSOLUTE

MINIMA FOUND BY EACH ALGORITHM, BUT THE AVERAGE MINIMA FOUND BY EACH ALGORITHM

single point crossover with a crossover probability of 1, and a
mutation probability of 0.01.

Each algorithm had a population size of 50, an elitism param-
eter of 2 (unless noted otherwise in the previous paragraph), and
ran for 50 generations. We ran 100 Monte Carlo simulations of
each algorithm on each benchmark to get representative perfor-
mances. Tables II and III shows the results of the simulations.
Table II shows the average minima found by each algorithm,
averaged over 100 Monte Carlo runs. Table III shows the abso-
lute best minima found by each algorithm over 100 Monte Carlo
runs. In other words, Table II shows the average performance of
each algorithm, while Table III shows the best performance of
each algorithm. Note that the normalizations in the tables are
based on different scales, so numbers cannot be compared be-
tween the two tables.

From Table II, we see that BBO and SGA both performed
the best (on average) on seven of the 14 benchmarks. Table III
shows that SGA was the most effective at finding function
minima when multiple runs are made, performing the best
on seven of the 14 benchmarks. BBO was the second most
effective, performing the best on four of the benchmarks, while
ACO performed the best on three of the benchmarks.

Benchmark results must always be taken with a grain of salt.
First, we did not make any special effort to tune the optimization
algorithms in this section. Different tuning parameter values in
the optimization algorithms might result in significant changes
in their performance. Second, real-world optimization problems
may not have much of a relationship to benchmark functions.
Third, benchmark tests might result in different conclusions if
the grading criteria or problem setup change. In this section,
we examined the mean and best results attained with a certain
population size and after a certain number of generations. How-
ever, we might arrive at different conclusions if (for example)
we change the generation limit, or look at how many genera-
tions it takes to reach a certain function value, or if we change
the population size. In spite of these caveats, the benchmark re-
sults shown here are promising for BBO, and indicate that this
new paradigm might be able to find a niche among the plethora
of population-based optimization algorithms.

The computational requirements of the eight optimization
methods were similar. We collected the average computa-
tional time of the optimization methods as applied to the 14
benchmarks discussed in this section. The results are shown in
Table II. PBIL was the quickest optimization method. BBO was
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TABLE III
BEST NORMALIZED OPTIMIZATION RESULTS ON BENCHMARK FUNCTIONS. THE NUMBERS SHOWN ARE

THE BEST RESULTS FOUND AFTER 100 MONTE CARLO SIMULATIONS OF EACH ALGORITHM, AND

NORMALIZED SO THAT THE SMALLEST NUMBER IN EACH ROW IS 100. NOTE THAT THESE

ARE THE ABSOLUTE BEST MINIMA FOUND BY EACH ALGORITHM

the fifth fastest of the eight algorithms. However, it should be
noted that in the vast majority of real-world applications, it is
the fitness function evaluation that is by far the most expensive
part of a population-based optimization algorithm.

B. Sensor Selection Results

The sensor selection problem can be solved with population-
based optimization methods. A population member consists of a
vector of integers, with each element in the vector representing
a sensor number. The fitness or HSI of a population member is
given by (17) with . If an invalid sensor set arises during
the optimization process due to too many of a certain sensor
type, then we replace some of the duplicated sensor types with
a randomly chosen sensor to enforce feasibility.

We assumed here that we could use a total of 20 sensors (out
of our unique 11 sensors) with each sensor being used no more
than four times. The total number of sensor sets to choose from
is the coefficient of in the polynomial

(21)

The coefficient of in this polynomial is equal to 3 755 070.
That is the total number of sensor sets that must be searched
in order to find the minimum value of in (17). In order to
compute for a single sensor set, we need to solve for for
that sensor set. In order to solve for , we need to solve a dis-
crete algebraic Riccati equation (DARE) [11]. This can be done
with the DARE function in Matlab’s Control System Toolbox. A
DARE solution with 13 states (the three original states plus the
ten health parameters) and 20 measurements takes 0.02 s on an
admittedly outdated 1.2 GHz personal computer. So in order to
search all 3 755 070 sensor sets, we require about 21 h of CPU
time. Note that the minimum cost sensor set and its cost will
be computer-dependent because of numerical issues in Matlab’s
DARE computation. Twenty-one hours of CPU time is not un-
reasonable if it only needs to be done once. However, if it needs
to be done many times (once for 20 sensors, once for 19 sen-
sors, once for 21 sensors, etc.), or if it needs to be done repeat-
edly as different aspects of the problem change (signal-to-noise
ratios, system operating point, etc.), then the CPU time quickly
becomes impractical.

TABLE IV
OPTIMIZATION RESULTS FOR THE SENSOR SELECTION PROBLEM. THE

NUMBERS SHOWN ARE THE MINIMUM FUNCTION VALUES FOUND BY EACH

ALGORITHM AVERAGED OVER 100 MONTE CARLO SIMULATIONS, AND THE

BEST SOLUTIONS FOUND DURING THOSE 100 SIMULATIONS

Fig. 4. Average sensor selection results of BBO without mutation, and BBO
with probability-based mutation.

Instead of a brute-force 21-h search, we can use computer
intelligence to find a near-optimal sensor set. We implemented
population-based optimization algorithms to search for the best
sensor set. The algorithms we used were the same as those used
for the benchmark tests in Section V-A. For BBO, we used the
algorithm given in Section III-C. For each algorithm, we used a
population size of 50, a generation count of 100, and an elitism
count of 2. One run of each optimization algorithm therefore
required 4802 DARE evaluations, a computational savings (rel-
ative to an exhaustive search) of approximately 99.87%.

Table IV shows the results of the optimization methods on the
sensor selection problem. We see that BBO performs the best in
terms of both average performance and best performance.

Fig. 4 shows the results of the BBO search with and without
probability-based mutation (see Section III-B) when the popu-
lation size is 20. The figure shows the results of each method
averaged over 100 Monte Carlo simulations. We see that the
performances of the methods are comparable, but BBO with
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probability-based mutation is clearly better than BBO without
mutation. Note that we used a small population size for Fig. 4.
Mutation can be detrimental for large population sizes, but with
small population sizes mutation helps increase diversity and in-
creases the changes for a good solution.

These simulation results should not be taken to mean that
BBO is “better” than other population-based optimization al-
gorithms. Such a general statement would be an oversimplifica-
tion, especially in view of the no free lunch theorem [32]. How-
ever, the results presented here show that BBO provides better
performance than most of the other algorithms we tested for
the particular benchmarks that we examined. The results shown
here indicate that BBO is at least competitive with other popu-
lation-based optimization algorithms, and could provide a valu-
able tool for practical problems.

VI. CONCLUSION

We have shown how biogeography, the study of the geograph-
ical distribution of biological species, can be used to derive algo-
rithms for optimization. This new family of algorithms is called
BBO. We have applied BBO to benchmark functions and to
a sensor selection problem, and shown that it provides perfor-
mance on a par with other population-based methods. We cannot
conclude that BBO is universally better than other methods, or
vice versa, in view of the no free lunch theorem. However, it
may be possible in future work to quantify the performance of
BBO relative to other algorithms for problems with specific fea-
tures. The good performance of BBO on the benchmarks and
the sensor selection problem provides some evidence that BBO
theory can be successfully applied to practical problems. This
paper is preliminary in nature and, therefore, opens up a wide
range of possibilities for further research.

It would be interesting to prove the conjecture in Section II
about the eigenvalues of . The matrix has a very special
structure that has apparently not yet appeared in the literature.
The properties of could have important implications for the
behavior of BBO with respect to stability, convergence, equi-
libria, and other issues.

Another important extension of this work would be to apply
BBO to the optimization of problems with dynamic fitness land-
scapes. This could be done by using optimal filters to estimate
solution fitnesses, similar to what has been suggested for GAs
[33].

It might be fruitful to explore the idea of species sharing only
between similar solutions (neighboring habitats). Species are
more likely to migrate to habitats that are close to their place of
origin. This is similar to niching in GAs [23] (where subspecies
do not compete with each other), and is also reminiscent of the
speciating island model [34].

The details of the species model in Fig. 1 could be adjusted
to improve optimization performance. We used linear and sym-
metric immigration and emigration curves, but perhaps other
shapes could give better performance under certain conditions.
In addition, it could be supposed that a habitat must have a min-
imum nonzero HSI in order to support any species, which would
give a species count lower bound that is greater than zero [4].

We formulated BBO to optimize functions of discrete vari-
ables. It would be valuable to modify the BBO algorithm so

that it could be used to directly optimize functions of contin-
uous variables.

We have seen that BBO has features in common with other
population-based methods. These connections should be ex-
plored further. Under what conditions might BBO be equivalent
to these other methods?

An issue that has not been explored in this paper is that the
reproductive value of an individual as a function of its age looks
like a triangular function. Reproductive value is low at young
ages (due to infant mortality), high at child-bearing ages, and
low again at old ages (due to loss of fertility). The same could
be said of species. A young species has a chance of being poorly
adapted to its environment and so has only a small chance of
speciating, a middle-aged species is both mature enough and
dynamic enough to speciate, and an old species is too stagnant
to speciate. This could lead to the introduction of an age criterion
in BBO, similar to that which has been used in GAs [35].

Other approaches and aspects of biogeography could inspire
variants to the BBO suggested in this paper. The biogeography
literature is so rich that there are many possibilities along these
lines. For example, how can population sizes be incorporated
into BBO? How can predator/prey relationships be incorporated
into BBO? How can variations in species mobilities be incorpo-
rated into BBO? How can the evolution of migration rate for a
particular species be incorporated into BBO? How can popula-
tion models be incorporated into BBO [36], [37]?

We note that CPU time is a bottleneck to the implementation
of many population-based optimization algorithms. If an algo-
rithm does not converge rapidly, it will be impractical, since it
would take too long to find a near-optimal solution. BBO does
not seem to require an unreasonable amount of computational
effort; of the eight optimization algorithms compared in this
paper, BBO was the fifth fastest. Nevertheless, finding mech-
anisms to speed up BBO could be an important area for further
research. For example, perhaps knowledge could be incorpo-
rated to replace selected SIVs in a way such that the modified
solution is always better than the original solution.

Another bottleneck to population based optimization algo-
rithms, and one that is related to computational effort, is the
problem of creating infeasible solutions. In BBO as presented
here, it is not possible to check for feasibility while a new so-
lution is being completed. The feasibility check has to wait
until after the new solution is already complete. This proce-
dure may result in creating too many infeasible solutions and
may slow down the algorithm considerably. We conclude that
finding mechanisms to ensure feasibility during solution gener-
ation could be an important area for further research. For ex-
ample, perhaps knowledge could be incorporated to replace se-
lected SIVs in a way such that the modified solution is always
feasible. Note that this suggestion (in general) also applies to
other population based optimization algorithms. This paper has
introduced a new optimization tool that can hopefully be applied
to many different types of problems. Almost every problem in
engineering (and in life) can be interpreted as an optimization
problem [38]. The new optimization algorithm introduced here
opens up promising avenues of productive research. The soft-
ware that was used to generate the results shown in this paper is
available at http://academic.csuohio.edu/simond/bbo.
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APPENDIX

This appendix provides a proof of Theorem 1. If the species
count probabilities are in steady-state, then from (3), we have

. Taking the singular value decomposition (SVD)
[39] of in this equation gives . (We use the

superscript to indicate the Hermitian transpose of a matrix.)
Since in an SVD is always nonsingular, this implies that

(22)

Combining (7) with Observation 1 shows us that has rank .
Therefore, also has rank , which means that the singular
value matrix has nonzero diagonal elements and one zero
diagonal element (the lower right element in is zero). Com-
bining this information with (22) shows that

(23)

Since in an SVD is always a unitary matrix, this equation
implies that is equal to the last column of multiplied
by some scalar. However, from SVD theory, we know that the
last column of is equal to the eigenvector that corresponds
to the zero eigenvalue of . We know that in (8) is the
eigenvector that corresponds to the zero eigenvalue of . That
means that , which means that , which
means that in (8) is the eigenvector that corresponds to the zero
eigenvalue of . Therefore is equal to multiplied by
some scalar. The elements of must add up to one, and so
we obtain (12).
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